MODUL
MKK-5/3 SKS/ MODUL I-VII

FOTOGRAMETRI
TERAPAN

EKO BUDI WAHYONO
BAMBANG SUYUDI

KEMENTRIAN AGRARIA DAN TATA RUANG /
BADAN PERTANAHAN NASIONAL
SEKOLAH TINGGI PERTANAHAN NASIONAL
2017
Hak cipta © pada penulis dan dilindungi Undang-undang
Hak Penerbitan pada Penerbit Sekolah Tinggi Pertanahan Nasional
Kode Pos 55293, www.stpn.ac.id Tlp.0274-587239
Indonesia

Dilarang mengutip sebagian ataupun seluruh buku ini dalam bentuk apapun, tanpa ijin dari penulis dan penerbit

Edisi Revisi
Cetakan Pertama, Nopember 2011
Cetakan Kedua, Desember 2014
Cetakan Ketiga, Desember 2017

Penelaah Materi
Pengembangan Desain Instruksional
Desain Cover
Lay-Outer
Copy-Editor
Ilustrator
Tim STPN
STPN PRESS
:
:

Eko Budi Wahyono, Bambang Suyudi
Fotogrametri Terapan; I-VII
MKK-5/3 SKS/ Eko Budi Wahyono, Bambang Suyudi
Yogyakarta : Sekolah Tinggi Pertanahan Nasional, 55293

ISBN :
Judul
Fotogrametri Terapan
KATA PENGANTAR

Mengingat keterbatasan yang ada, buku dengan 7 (tujuh) modul perkuliahan yang telah tersusun ini, belum lengkap dan perlu banyak penyempurnaan. Selanjutnya penyusun dengan senang hati menerima kritik, saran dan perbaikan guna penyempurnaan buku materi pokok ini.

Akhirnya, semoga buku ini berguna bagi mahasiswa khususnya dan bagi peminat fotogrametri serta bermanfaat untuk turut memajukan pendidikan di kampus STPN tercinta.

Yogyakarta, Desember 2017

Penyusun
DAFTAR ISI

<table>
<thead>
<tr>
<th>KATA PENGANTAR</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAFTAR ISI</td>
<td>ii</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>iii</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
<td>iv</td>
</tr>
<tr>
<td>PENDAHULUAN</td>
<td>v</td>
</tr>
</tbody>
</table>

MODUL 1. PENGERTIAN, PERKEMBANGAN DAN RUANG LINGKUP

<table>
<thead>
<tr>
<th>FOTOGRAMETRI DAN PENGINDERAAN JAUH</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Definisi dan Pemahaman Fotogrametri dan Penginderaan Jauh</td>
<td>1</td>
</tr>
<tr>
<td>B. Perkembangan Teknologi Fotogrametri dan Penginderaan Jauh</td>
<td>7</td>
</tr>
<tr>
<td>C. Penerapan PMNA/KBPN Nomor 3 Tahun 1997</td>
<td>11</td>
</tr>
<tr>
<td>D. Sasaran Penginderaan Jauh dalam lingkup Kadastral</td>
<td>14</td>
</tr>
</tbody>
</table>

MODUL 2. INTERPRETASI, KLASIFIKASI DAN GEOMETRI FOTO UDARA

<table>
<thead>
<tr>
<th>Pengertian Interpretasi Citra dan Ragam Foto Udara</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Informasi Tepi dan Titik Pusat Foto Udara</td>
<td>25</td>
</tr>
<tr>
<td>C. Klasifikasi Foto Udara</td>
<td>30</td>
</tr>
<tr>
<td>D. Distorsi dan Displacement pada Foto Udara</td>
<td>34</td>
</tr>
<tr>
<td>E. Geometri Foto Udara</td>
<td>36</td>
</tr>
</tbody>
</table>

MODUL 3. PENGAMATAN DAN PARALAKS STEREOSKOPIK

<table>
<thead>
<tr>
<th>Pemandangan Monoskopik</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Pemandangan Stereoskopik</td>
<td>62</td>
</tr>
<tr>
<td>C. Pengamatan Foto Udara Secara Stereoskopik</td>
<td>62</td>
</tr>
<tr>
<td>D. Stereoskop</td>
<td>63</td>
</tr>
<tr>
<td>E. Paralaks</td>
<td>64</td>
</tr>
</tbody>
</table>

MODUL 4. PENGOLAHAN FOTO TUNGGAL DAN STEREO

<table>
<thead>
<tr>
<th>Pengolahan Foto Tunggal</th>
<th>81</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Pengolahan Foto Stereo</td>
<td>82</td>
</tr>
</tbody>
</table>

MODUL 5. PEMETAAN FOTOGRAMETRI DAN PENGINDERAAN JAUH

<table>
<thead>
<tr>
<th>Tatacara Pemotretan Udara</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Konsep Peralatan Pemetaan Digital</td>
<td>100</td>
</tr>
<tr>
<td>C. Perkembangan Piranti Pemetaan Fotogrametri</td>
<td>101</td>
</tr>
<tr>
<td>D. Aturan Pemetaan Kadastral dari data Citra Satelit</td>
<td>102</td>
</tr>
<tr>
<td>E. Ploting dan Kartografi</td>
<td>109</td>
</tr>
</tbody>
</table>
MODUL 6. APLIKASI FOTOGAMETRI DIBIDANG KADASTRAL 115
A. Metoda Fotogrametri ... 115
B. Pengukuran Bidang Tanah dengan Blow-up Foto 116
C. Pengukuran Bidang Tanah dengan Menggunakan Peta Foto 120
D. Pengukuran Bidang Tanah dengan Menggunakan Peta Garis Digital Fotogrametri .. 125

MODUL 7. UNMANNED AERIAL VEHICLE (UAV) 133
A. Teori Unmanned Aerial Vehicle .. 133
B. Instrumen Unmanned Aerial Vehicle.. 136
C. Pelaksanaan Pemetaan Menggunakan Wahana Unmanned Aerial Vehicle .. 140

DAFTAR PUSTAKA .. 132
KUNCI TEST FORMATIF ... 133
PENDAHULUAN

Melalui buku materi pokok ini diharapkan mahasiswa mampu mengikuti perkuliahan Fotogrametri dan Penginderaan Jauh dengan baik dan selanjutnya diharapkan mahasiswa mampu memahami prosedur pelaksanaan dan pengukuran melalui media foto udara khususnya dan mampu menerapkan pemetaan fotogrametri di bidang kadastral.

Perla disampaikan juga bahwa mata kuliah ini masuk dalam aras teknis operasional, dan untuk mempelajari materi ini diharapkan mahasiswa secara bersama-sama juga mempelajari materi Ilmu Ukur Tanah dan Pendaftaran Tanah sehingga secara bersama-sama memberikan pemahaman yang lebih komprehensip.
MODUL I
PENGERTIAN, PERKEMBANGAN DAN RUANG LINGKUP FOTOGRAMETRI DAN PENGINDERAAAN JAUH

Dalam pekerjaan survei dan pemetaan pada dasarnya dapat dilakukan dengan berbagai metode seperti metode terestrial, fotogrametris dan extraterrestrial dengan wahana satelit. Pada modul ini akan membahas lebih lanjut tentang metode fotogrametris dan berusaha mengenalkan lingkup fotogrametri dan penginderaan jauh di bidang kadastral.

Kompetensi Dasar yang diharapkan adalah agar mahasiswa mampu menjelaskan pengertian, perkembangan dan ruang lingkup fotogrametri dan penginderaan jauh di bidang kadastral. Dengan mempelajari modul ini mahasiswa akan mengenal apa itu fotogrametri dan penginderaan jauh, bagaimana perkembangannya dan mengetahui aplikasinya untuk pekerjaan kadastral.

A. Definisi dan Pemahaman Fotogrametri dan Penginderaan Jauh

Berdasarkan Perkumpulan Fotogrametriawan Amerika (American Society of Photogrammetry/ ASP), Fotogrametri didefinisikan sebagai seni, ilmu dan teknologi untuk memperoleh informasi terpercaya tentang obyek fisik dan lingkungannya melalui prosese perekaman, pengukuran dan interpretasi
gambar, baran fotografik dan pola radiasi tenaga elektromagnetik yang terekam. Foto yang dimaksud disini adalah foto udara, yaitu rekaman dari sebagian permukaan bumi yang dibuat dengan menggunakan kamera yang dipasang pada wahana antara lain pesawat terbang. Perkembangan fotogrametri selanjutnya telah mengantarkan kepada pengertian fotogrametri yang dapat diberi makna lebih luas yakni merupakan ilmu pengetahuan dan tehnologi pengolahan foto udara untuk memperoleh data dan informasi yang tepat untuk tujuan pemetaan dan rekayasa.

Mendasarkan pada dua pengertian diatas dapat disarikan bahwa pada intinya fotogrametri adalah suatu ilmu dan tehnologi untuk mendapatkan ukuran yang terpercaya dari foto udara. Hal ini telah memberikan arti bahwa semua ukuran obyek fisik yang dihasilkan secara fotogrametris harus dapat dipertanggungjawabkan kebenarannya, sehingga menghasilkan data dan informasi yang dapat dimanfaatkan oleh pengguna.

Dengan memperhatikan perkembangan teknologi pemetaan fotogrametri atau pemetaan-fotogrametri, maka definisi Fotogrametri (Fotogrametri) dapat dirangkum menjadi lebih jelas, serta terarah pola aplikasinya, sebagai berikut:

“Fotogrametri adalah ilmu, teknologi, dan rekayasa yang bersumber dari cara pengolahan data hasil rekaman dan informasi, baik dari citra fotografik maupun dari non fotografik; untuk tujuan pemetaan rupa bumi serta pembentukan basis data bagi keperluan rekayasa tertentu”

Sebagai input data dalam lingkup tugas fotogrametri dapat berupa rekaman, misalnya segala bentuk hasil pemotretan udara (dengan berbagai macam kamera dan wahana yang sesuai), serta data penunjang terkait peningkatan kualitas hasil seperti pengukuran data ikatan (termasuk pengukuran Titik Dasar Teknik (TDT). Dengan tersedianya input data non fotografik (tidak melalui pemotretan udara) misalnya mempergunakan berbagai citra satelit (satellite imagery) dapat mempercepat proses pemetaan dewasa ini (citra satelit dengan resolusi yang memenuhi kebutuhan pemetaan).

Tujuan fotogrametri selain untuk pemetaan rupa bumi (lazim disebut pemetaan topografi, baik skala kecil sampai peta skala besar) dapat dimanfaatkan untuk berbagai keperluan informasi lahan yang dalam kelompok fotogrametri
sebagai hasil GIS atau Geographic Information System (SIG = Sistem Informasi Geografis); maka lingkup fotogrametri dapat dipisahkan atas dua kelompok besar yaitu:

1. Fotogrametri metrik = Penentuan geometri dan posisi obyek melalui pengukuran/ pengamatan, baik jarak, sudut, luas, dan volume dari hasil proses fotogrametris
2. Fotogrametri interpretative = Pengolahan citra fotografik amupun non fotografik (radar, satellite imagery, dan lain-lain) guna pembentukan basis data bagi keperluan rekayasa tertentu.

Penginderaan jauh (remote sensing) secara sederhana merupakan teknik untuk mengamati objek di permukaan bumi dari udara dengan bantuan sensor. Penginderaan jauh modern mulai dikenal manusia pada 1858 ketika Gaspard-FelixTournachon pertama kali memotret kota Paris dengan menggunakan Balon Udara.

Fotogrametri interpretatif merupakan cabang ilmu dari penginderaan jauh, ilmu ini memberikan kesempatan untuk mempelajari pengenalan dan identifikasi obyek serta menilai arti pentingnya obyek tersebut melalui analisis secara sistematis dan cermat. Dalam fotogrametri interpretatif diutamakan pengenalan obyek melalui foto udara, dan pada foto udara kenampakan obyek secara
individual dapat diamati. Penginderaan jauh merupakan ilmu dan seni untuk memperoleh informasi tentang obyek, daerah atau gejala dengan jalan mengenalisis data yang diperoleh dengan menggunakan alat (alat pengindera atau sensor) tanpa kontak langsung terhadap obyek, gejala atau daerah yang dikaji.

Khusus bagi sektor pertanahan, sangat diutamakan proses fotogrametri dengan output (hasil akhir proses) berupa peta skala besar, baik untuk Peta Dasar Pendaftaran sesuai ketentuan yang berkiblat pada:

1. PP No. 24 Tahun 1997 tentang Pendaftaran Tanah.

Peta skala besar serta terkait kelengkapan informasinya, tidak bisa lepas dari filosofi peta dan sifat-sifat dasar yang lekat padanya; maka perlu diperkenalkan terlebih dahulu perihal:

1. Peta skala besar merupakan media yang tepat dan akurat, serta nemadai bagi pendataan obyek di muka bumi untuk sektor pertanahan (baik untuk sektor perpajakan, PBB atau Pajak Bumi dan Bangunan maupun BPN).
2. Pengertian peta sebagai bentuk proyeksi letak obyek pada bidang datar yang disebut peta dengan sifat-sifatnya (baik bentuk hard copy maupun dalam soft copy).
3. Skala peta menentukan kualitas dan ketelitian penyajian informasi (makin besar skala peta, makin jelas kenampakan data geometrinya, jarak, sudut, luas bidang).
4. Dari proses pemetaan dikenal dua cara: cara langsung atau pemetaan terestris yang dilakukan di lapangan; serta cara fotogrametris lewat input data fotogrametris.
5. Dari kelengkapan penyajian peta, dibedakan atas: peta planimetrik (peta bidang datar) dan peta dalam keadaan ruang atau peta tiga dimensi atau peta planimetrik dan data ketinggian (peta dengan informasi garis kontur atau planimetrik dan ketinggian).
6. Kegiatan pemetaan terdiri atas 3 langkah pokok:
a. Data capture, pengumpulan data/ pemotretan/ perekaman data
b. Data processing atau pengolahan data capture menjadi hasil peta
c. Penyajian dan penyimpanan data (termasuk pemeliharaan basis data)

7. Sifat peta dapat kadaluwarsa ("out of date") karena beberapa hal:
 a. Pesatnya perubahan bentuk obyek per satuan waktu
 b. Pola kebijakan administrasi tata ruang daerah (batas wilayah)
 c. Perubahan alami (banjir, bencana alam, dan lain-lain sebab)

8. Perlu dilakukan penyegaran data peta (tugas up dating) berkala

9. Aspek manfaat peta, baik lintas sektoral maupun regional (termasuk perkembangan teknologi pemetaan di era globalisasi).

Dalam decade terakhir terasa dampak IPTEK (ilmu pengetahuan dan teknologi) terhadap pemetaan fotogrametri, mulai cara pengambilan/perekaman data atau data akuisisi sampai processing data semakin dipermudah dan terjadi peningkatan kualitas hasil (macam-macam peta dan ragam penggunaannya). Penggunaan berbagai wahana dan kombinasi ragam alat perekam data obyek di atas permukaan tanah telah semakin mempermudah cara perolehannya. Pemakaian citra satelit disisi lain telah mampu menjembatani 2 (dua) fenomena pokok dalam fotogrametri (sehingga kualitas optimal hasil tercapai). Kedua fenomena:

1. Makin tinggi wahana pengambilan data, makin luas dapat diperoleh cakupan lahan (luasan muka bumi)
2. Makin tinggi pengambilan data, akan menyebabkan makin berkurang kualitas data (resolusi gambar yang diperoleh).

Kedua fenomena dapat dilukiskan; namun saat ini ada cara dan hasil yang membuktikan justru memadukan kedua fenomena sehingga diharapkan mampu mendekati kualitas foto udara skala besar yang makin kuat resolusinya (tetapi foto udara masih mengikuti kedua fenomena tersebut). Jawabannya adalah bahwa dengan semakin luas aeral yang didapatkan masih dengan resolusi gambar yang jelas. Dari perkembangan IPTEK, ada urutan kemajuan/ peningkatan data akuisisi sebagai berikut:
a. Citra satelit Landsat (USA) memiliki resolusi sampai 15 meter
b. Citra satelit SPOT (Rusia) memiliki resolusi sampai 5 meter
c. Citra satelit IKONOS (USA) color sampai resolusi 4 meter dan
d. Citra satelit IKONOS black and white resolusi sampai 1 meter

Namun, dengan citra satelit “Quick Bird” (USA) kini mampu memiliki resolusi sampai 60 Cm (atau 0,6 m) yang mampu diproses menghasilkan peta skala besar 1 : 2500 (sebagai bentuk Peta Pendaftaran Tanah). Dari hasil Workshop Manajemen Proyek Pendaftaran Tanah Sistematik dan LMPDP di Yogyakarta tanggal 8 – 11 Desember 2003, dapat disusun Standarisasi Spesifikasi Teknis Pembuatan Peta Dasar Menggunakan Citra Satelit (Kerjasama BPN dan T. Geodesi UGM); antara lain :
a. Untuk fase II PAP (Proyek Adm. Pertanahan) mulai 2004 peta dasar pendaftaran tanah menggunakan citra satelit dengan keunggulan yang memadai sebagai peta dasar pendaftaran skala besar
b. Harga operasional (biaya proyek) lebih murah dari foto udara.
c. Waktu pelaksanaan (data akuisisi) akan jauh lebih cepat.
d. Saar ini telah banyak pihak pelaksana (swasta berkualitas) yang akan mampu membantu pelaksanaan PAP-BPN; produktifitas akan naik
e. Pola pemetaan kadastral akan berangsur kea rah pemetaan digital.

Dasar pemahaman fotogrametri dapat dimulai dari pola pemotretan udara sebagai salah satu cara data akuisisi (selain cara pemanfaat non foto udara/ non fotografis misalnya dari data citra satelit, satellite imagery), maka diberikan berdasarkan :
1. Cara fotografi (manual dan digital) bisa dengan wahana PB (pesawat berawak) dan wahana lain seperti pemakaian ultra light vehicle (TRIKE atau pemakaian gantole bermesin) sehingga mampu membawa jenis kamera ringan (akan diberikan atas macam/ragam kamera pula)
a. PB dengan memakai kamera metrik standar 23 Cm X 23 Cm
b. PB dapat pula memakai kamera metrik ukuran medium (6 X 6 Cm)
c. Pesawat ultra ringan membawa kamera ringan (atau format kecil)
2. Cara perolehan data dari non fotografi udara, atau memakai hasil rekaman citra satelit (macam-macam citra satelit dengan resolusi beda)

3. Dari macam kamera berdasarkan format dan kualitas, dikenal:
 a. Kamera standar metrik ukuran 23 Cm X 23 Cm
 b. Kamera metrik format medium 6 Cm X 6 Cm (ada data kalibrasi)
 c. Kamera format kecil (small format aerial photography) memakai kamera non metrik ukuran 36 mm X 24 mm (kamera komersial)

Perlu dicatat bahwa bila proses nantinya akan lewat cara pemetaan digital, maka semua data analog harus ditransformasi dahulu kedalam data digital atau lewat proses “scanning” atau penyiaman.

B. Perkembangan Teknologi Fotogrametri dan Penginderaan Jauh

Perkembangan fotogrametri selanjutnya semakin pesat setelah ditemukannya pesawat udara pada tahun 1902 oleh Wright Brothers. Pada perang dunia pertama foto udara dimanfaatkan untuk kegiatan pengintaian medan lawan. Pekerjaan pemetaan dengan memanfaatkan fotogrametri ini kemudian juga berkembang sangat pesat pada periode antara perang dunia pertama dan perang dunia kedua, serta keterlibatan didalam kegiatan fotogrametri pada periode ini dilakukan pula oleh berbagai instansi swasta dan badan pemerintah di Amerika Serikat dan Eropa.

Perkembangan pemanfaatan fotogrametri lebih lanjut akibat adanya pemetaan yang dilakukan secara besar-besaran selama perang dunia pertama dan kedua, adalah semakin berkembang pula peralatan dan tehnik didalam fotogrametri. Kegiatan pemetaan dengan fotogrametri yang selama perang secara keseluruhan digunakan untuk kepentingan pengintaian medan lawan, kemudian terjadi peningkatan pekerjaan intarpretasi foto udara digunakan untuk kepentingan yang lebih luas.

Kegiatan pemetaan secara fotogrametris yaitu menggunakan foto udara yang dilakukan selama puluhan tahun menyebabkan semakin berkembang pula peralatan dan tehnik dalam pemetaan, diikuti dengan perkembangan fotogrametri yang akurat dan efisien, serta sangat menguntungkan didalam bidang pemetaan. Fotogrametri dapat dimanfaatkan untuk kegiatan pemetaan yang memerlukan ketelitian tinggi, sehingga perkembangan selanjutnya sebagian besar pemetaan topografi dan juga pemetaan persil dilakukan dengan menggunakan fotogrametri.

Pada prinsipnya pemetaan cara fotogrametri sangat cocok untuk luasan yang besar (bila dibandingkan dengan cara terestris atau langsung pengukuran di lapangan); namun teknologi pemotretan udara dapat bervariasi dari luasan kecil/terbatas sampai luasan sangat besar (bila memakai data citra satelit). Pada kawasan yang sangat rawan (remote areas) dapat dilakukan pengambilan data topografi secara pemotretan udara dengan panduan navigasi (pemakaian alat GPS). Perkembangan pemotretan udara dewasa ini telah pesat dengan pemakaian sarana navigasi GPS (global Positioning System) atau lebih dikenal pemotretan
udara cara kinematika (GPS dipadukan dengan kamera udara dalam satu misi pemotretan).

Pemotretan udara akan menjadi sangat ekonomis bila melibatkan kawasan sangat luas (selain lewat cara pemakaian citra satelit) dan masih mempertimbangkan kondisi logistic setempat. Hal ini karena memerlukan sarana landasan dan bahan bakar yang sesuai (dikenal macam macam pesawat dengan jenis bahan bakar berbeda, seperti avgas, avtur, kerosin, dll). Pemakaian pola pemotretan berdasar SFAP (Small Format Aerial Photography) mampu menempatkan kesempatan pemetaan skala besar dengan kualitas resolusi gambar terbaik, bila proses pemetaan didukung software yang tepat serta distribusi TDT (titik dasar teknik, sebagai pengganti titik kobtrol pemetaan pada umumnya). TDT atau lazim dikelompokkan dalam penempatan GCP (ground control point) akan meningkatkan ketelitian dan kualitas peta skala besar. Dari aspek biaya, SFAP akan merupakan cara ekonomis bila perencanaan awal seksama. Kata kunci, adalah FP dan cara eksekusi yang tepat berdasar kondisi medan yang ada.

Untuk memberikan gambaran awal dari pola pemotretan udara dengan sasaran ekonomis yang didukung teknologi pemetaan saat ini, kiranya SFAP dan cara pemotretan udara standar (memakai format foto 23 Cm X 23 Cm) dapat dibuat simulasi kaitan wahana, kamera, skala pemotretan, dan luasan proyek. Dengan cara simulasi akan dapat ditetapkan pilihan teknologi yang tepat guna serta atas pertimbangan biaya yang ekonomis. Dalam pola simulasi disediakan alternative pilihan kamera (macam ukuran, materik dan non metrik) serta pilihan skala pemotretan yang terkait luasan proyek. Tiap liputan foto tentu terkait pula dengan luasan cakupan.

Sebelum dikupas pada bab lanjut (tentang persiapan pemotretan, luas per model) maka dapat diterima data hitungan luasan model terkait skala foto dan luasan proyek. Pemahaman dasar sekedar menunjukkan korelasi luas model dan jumlah foto sehingga bisa diperkirakan harga per satuan luasan. Dari table simulasi juga akan didapat kesimpulan antara lain tentang:

a. Luasan minimal yang cocok untuk pemotretan memakai kamera standar, atau kamera format lain
b. Masalah persyaratan navigasi, terkait ketinggian terbang PB

c. Efisiensi pemotretan berdasar jumlah foto yang akan didapatkan
(minimal foto yang diperkirakan cocok dan masih ekonomis).

Pertimbangan teknologi pemotretan udara dari kacamata biaya semata atas dasar utama:

- a. Tersedianya wahana (jenis pesawat, bahan bakar yang tersedia di lokasi)
- b. Tersedianya kamera yang ada, peralatan navigasi yang tersedia
- c. Kemampuan mencakup luasan tertentu (tidak terlalu besar)
- d. Efisiensi berdasar hitungan jumlah foto per luasan yang ditetapkan

Pemilihan alternative pemotretan (selain memakaian citra satelit) semata atas dasar biaya, teknologi yang dikuasai oleh pelaksana dan pengalaman pelaksana selama kurun waktu tertentu. Teknologi sangat pesat perkembangannya, dan selalu menghasilkan cara termudah (dan termurah) bila dipandang dari aspek kompetisi IPTEK. Terakhir pemetaan fotogrametri akan sangat dimungkinkan di masa mendatang mengarah kepada: "Instant mapping" atau dikenal dengan SOCOPh atau "Soft copy Photogrammetry" yalah di mana tiga tahapan mapping simultan menyatu dalam proses. Ibarat pesawat (wahana) membawa perlengkapan (hardware dan software mapping) lepas landas, melakukan data akuisisi/ pemotretan, serta langsung instant diproses. Pewasat/wahana turun sudah membawa hasil dengan kualitas peta dan data terkait. Produk langsung peta dalam bentuk hard dan soft copies.

Dalam PMNA/KBPN Nomor 3 Tahun 1997 ditetapkan dua cara pemetaan cadastral, baik cara terestris dan atau fotogrametris. Maka pemilihan skala foto akan sangat mempengaruhi jumlah hasil foto pada luasan yang sama. Untuk skala besar jelas akan lebih banyak jumlah fotonya dibandingkan dengan skala foto yang lebih kecil (pada luasan sama); hal ini sesuai fenomena tersebut dalam bab terdahulu. Namun pada luasan yang sama, jumlah foto akan sangat beda bila dipergunakan format beda. Untuk luasan tertentu, foto standar 23 Cm jauh akan lebih bisa mencakup luasan lebih dari format medium (6 X 6 Cm) ataupun format kecil, pada skala tetap. Maka telah pula dibuat standarisasi atas dasar
perkembangan teknologi pemetaan, untuk sektor pertanian. Dua pola pokok adalah hasil pembahasan dalam workshop (tahun 2003) atas pengalaman PAP fase-1 yang dinilai banyak kendala (teknis dan non teknis). Kedua pedoman buku adalah hasil pemikiran kerjasama pihak UGM (jurusan Teknik Geodesi) dan BPN Pusat :

a) Standarisasi Spesifikasi Teknis Pembuatan Peta Dasar Menggunakan Foto Udara
b) Standarisasi Spesifikasi Teknis Pembuatan Peta Dasar Menggunakan Citra Satelit.

C. Penerapan PMNA/KBPN Nomor 3 Tahun 1997

Dalam bidang kadastral hasil pemetaan secara fotogrametri meliputi foto udara, peta dasar pendaftaran berupa peta foto maupun peta garis dan blow up foto. Perlu diperhatikan bahwa apabila disuatu tempat telah tersedia peta dasar pendaftaran berupa peta foto pengukuran tetap dilakukan terhadap batas-batas bidang tanah sesuai dengan proses identifikasi yang dilakukan sebelumnya. Apabila batas-batasnya tidak teridentifikasi karena tutupan vegetasi atau halangan lain maka pengukuran dilaksanakan dari titik-titik batas yang berdekatan atau titik-titik lain pada peta foto sehingga titik batas yang tidak terlihat tadi dapat ditandai di peta foto dengan cara pematongan kemuka. Selanjutnya peta foto ini
digunakan sebagai dasar untuk memetakan letak batas bidang tanah dan mencatat data ukuran bidang-bidang tanah.

Dalam teknologi foto udara tatacara dan prosedur perolehan data (hasil pemotretan) harus melalui prosedur tetap (Protap) yang diatur oleh perundangan (peraturan pemerintah). Pemotretan udara adalah awal kegiatan fotogrametri yang tidak bisa lepas dari tatacara:

b. Pembuatan rencana jalur terbang bila akan memilih cara fotografi udara
c. Perijinan dengan dasar pembuatan jalur yang telah disepakati dan diberikan SC (Security Clearance) dari instansi berwenang (dalam hal ini dari pihak PUSSURTA TNI-AU, dibawah Dep. Hankam R.I.)
d. Selama operasi pemotretan (data akuisisi) lewat pengawasan dan pembinaan dari pihak berwenang (menyangkut sifat kerahasiaan data) dengan pengarahan oleh S.O (Security Officer) yang ditunjuk oleh Dep. Hankam, bersamaan dengan terbitnya S.C tersebut di atas.
e. Penerbangan (pemotretan udara) sesuai jadwal dan waktu yang telah diberikan dari pihak berwenang dengan koordinasi pihak komandan pangkalan TNI-AU (hal ini pesawat sipil selalu berada di kawasan pangkalan udara yang terdekat lokasi proyek PAP tersebut).
f. Mengikuti aturan penerbangan sipil (regulasi dari ICAO atau International Civil Aviation Organization) yalah semua jenis PB (pesawat berawak) harus terbang tidak boleh lebih rendah dari 2000 feet (dibawah 609 m)

Berdasar kemampuan wahana dan kombinasi kamera yang bisa dibawa terbang maka selain pemakaian PB dapat dipergunakan cara pemotretan udara dengan ultra light vehicle (misalnya memakai gantole bermesin yang bisa membawa peralatan kamera kecil dan alat Bantu navigasi GPS) sehingga boleh terbang agak rendah dan tetap memperhatikan keselamatan operasional. Dalam hal ini akan mampu dihasilkan skala foto (negatif film) pada skala besar. Namun keperluan terbatas dan cocok untuk luasan tidak luas. Telah banyak pula dipasarkan software mapping (piranti lunak pemetaan) yang mampu mengolah berbagai media hasil pemotretan udara (dengan berbagai jenis kamera dan format). Dalam
pembahasan lanjut akan dikupas tatacara penyiapan pemotretan dan prosedur pembuatan FP (Flight Plan) sebagai dasar perencanaan awal dalam data akuisisi. Namun sebelumnya, pengenalan parameter dalam FP perlu disajikan bersama rumus dasar yang akan dipakai untuk hitungan jumlah foto dalam suatu misi penerbangan (baik rumus hitungan atas dasar luas model atau jumlah foto riil dari data emperik). Hitungan emperik (notasi = N foto) langsung dapat ditentukan pada peta FP (lazim FP dibuat pada peta topografi yang sesuai). Maka jumlah foto dari dasar hitungan luas model (notasi = n dengan cara pembulatan ke-atas, angka-bulat). Parameter penting dalam hitungan FP:

a. Bila format foto standar (23 Cm X 23 Cm), maka a = 23 Cm
b. Liputan di lapangan (hasil cakupan foto) sepanjang = A; maka panjang liputan A = a X angka skala (dalam meter)
c. B = basis udara (dalam meter) = jarak antar dua exposure; panjang B = (1 - u) X A meter, u = 60% (pertampalan arah jalur)
d. Q = jarak antar strip jalur = (1 - q) X A meter; maka panjang jarak antar kedua posisi pemotretan = (1 - 30%) X A misal q = 30%
e. Luas efektif per model = F = B x Q (dalam satuan Ha)
f. Maka jumlah foto, dapat ditentukan dengan penambahan kalkulasi sebesar 10% (karena pendekatan kalkulasi dan untuk angka keamanan dalam FP); maka hasil kalkulasi untuk n = (1,1) X L / F dimana luasan proyek = L (dalam satuan sama, Ha pula)

Untuk penjelasan kalkulasi, bila L = 16.650 Ha (luas liputan proyek PAP-BPN) sedangkan untuk rencana pemotretan (sesuai PMNA.3/97) memakai skala foto udara 1 : 10.000, pertampalan 60% dan 30% format standar a = 23 Cm.

1. Basis udara = (1-0,6) 23 x 10.000 Cm = 920 meter
2. Jarak antar jalur Q = (1-0,3) 23 X 10.000 Cm = 1610 meter
3. Luas per model F = B x Q = 920 X 1610 m² = 148, 12 Ha
4. Maka jumlah foto n = 16.650 / 148,12 x (1,1) = 112,41 = 113 foto

Pembulatan selalu ke-atas; maka n = angka jumlah foto bulat.
Karena ada dua data n dan N (dari gambaran pada peta FP) misalnya N = 120 berarti ada “Personal Error” (kesalahan pribadi), hakakatnya tiap orang memiliki angka $\varepsilon < 10\%$ (tidak ada orang yang sempurna), N bisa $> \text{atau} < \text{dari} n$.

5. Rumus $\varepsilon = \frac{(n - N)}{N} \times 100\%$ ($n - N = \text{nilai absolutnya}$)

Sehingga dalam contoh $\varepsilon = \frac{(113 - 120)}{120} \times 100\% = 5,83\%$ masih memenuhi syarat toleransu ε (personal error).

Bagaimanakah bila nilai $\varepsilon > 10\%$, maka perlu cek ulang hitungan dan cara pengambaran lintasan arah jalur pada peta FP; bisa N yang terlalu margin atau berlebihan (batas liputan tiap model diluar kawasan pemotretan). Kesalahan sering pula terjadi pada hitungan luasan L (Ha) dari peta rencana. Kalau F tetap akan sama = 148,12 Ha untuk skala foto tetap 1 : 10.000 (pertampalan 60%, 30%); kecuali data format beda. Dalam hal penggunaan format medium (6 Cm) atau foto format kecil, SFAP (small format aerial photo, 36 mm X 24 mm).

D. Sasaran Penginderaan Jauh dalam Lingkup Kadastral

Penggunaan teknologi pemetaan di Badan Pertanahan Nasional melalui teknik indera dalam hal ini penggunaan Citra Satelit pada awalnya hanya digunakan untuk pemetaan Tata Guna Tanah. Hal ini dapat dimengerti bahwa citra satelit pada era tahun 80-an dan awal 90-an masih mempunyai resolusi yang rendah semacam Citra Spot dengan resolusi 20 meter dan citra Landsat dengan resolusi 30 meter. Mengingat rendahnya resolusi spasial ini kedua citra tersebut hanya layak untuk diterapkan dalam pembuatan peta Tata Guna Guna dengan skala sedang dan kecil.

Perkembangan pesat teknologi ini dimulai sejak tahun 1972, dengan diluncurkannya ERTS-1 (Earth Resources Technology Satellite-1) oleh NASA USA, yang memiliki resolusi spasial 80 meter dan resolusi temporal 18 hari. Generasi satelit terbaru, misalnya QUICKBIRD, menghasilkan citra satelit dengan resolusi 0.61 meter dan resolusi temporal 3 hari, suatu perkembangan yang luar biasa. Resolusi spasial adalah ukuran objek terkecil yang masih dapat disajikan
dibedakan, dan dikenali pada citra. Semakin kecil ukuran objek yang dapat direkam, semakin baik resolusi spasialnya. Resolusi temporal adalah kemampuan sensor untuk merekam ulang objek yang sama.

Ikonos

Diluncurkan pertama kali pada tanggal 24 September 1999 oleh Space Imaging, merupakan citra satelit komersial pertama yang memiliki resolusi spasial 1 meter. Satelit ini mengorbit bumi sinkron dengan matahari setinggi 681 km. Waktu revolusinya adalah 98 menit. Resolusi spasialnya adalah 3 hari. Harga citra Ikonos adalah 37 USD/Km².

QuickBird

Diluncurkan pada tanggal 18 Oktober 2001 oleh Digital Globe, merupakan citra satelit dengan resolusi tertinggi saat ini, yaitu 0.61 meter. Satelit ini mengorbit bumi sinkron dengan matahari setinggi 450 km. Waktu revolusinya adalah 93.4 menit. Resolusi spasialnya adalah 3-7 hari. Harga citra Ikonos adalah 24 USD/Km².

Melihat perkembangan teknologi indera dengan munculnya Citra Satelit Ikonos dengan resolusi 1 meter dan Quick Bird dengan resolusi 0.6 meter tidak menutup kemungkinan teknik ini dapat diaplikasikan dalam bidang kadastral yang memerlukan skala besar. Beberapa pertimbangan penggunaan citra satelit untuk bidang kadastral diantaranya :

1. Resolusi spasial citra satelit yang memenuhi syarat untuk pemetaan skala besar, di bidang kadastral skala peta dasar pendaftaran yang digunakan yaitu skala 1 : 10.000, 1 : 2.500 dan 1 : 1.000, beberapa kasus untuk bidang-bidang yang kecil dapat buat skala 1: 500, 1 : 250 atau lebih besar lagi.

2. Wilayah cakupan yang luas sehingga akan mempercepat kegiatan pemetaan di seluruh wilayah Indonesia.
3. Biaya yang relative murah dibanding dengan teknik lainnya seperti fotogrametri apalagi pengukuran terestris, sebagai gambaran biaya pengadaan citra Ikonos USD 20/km2 minimum ordeer 100km2 dan citra Quick Bird USD 22/km dengan minimum order 64 km2.

Namun demikian perlu diperhatikan beberapa hal berkaitan dengan penggunaan citra satelit untuk lingkup kadastral yaitu:
1. Kesiapan sumber daya manusia yang memadai sehingga proses dan produk peta ini dapat dimanfaatkan secara maksimal.
2. Kesiapan infrastruktur baik perangkat keras maupun perangkat lunak yang memerlukan biaya yang tinggi.

Latihan

1. Jelaskan definisi fotogrametri!
2. Sebutkan dua kelompok besar lingkup fotogrametri dan beri uraian seperlunya!
3. Uraikan langkah-langkah pokok dalam kegiatan pemetaan!
4. Bandingkan luas cakupan dan skala yang dapat ditangani pengukuran terestris, fotogrametri dan citra satelit!
5. Sebutkan beberapa aplikasi penggunaan Small Format Fotogrametri!
6. Sebutkan prinsip-prinsip yang harus dipenuhi dalam pengukuran dan pemetaan kadastral!
8. Apakah manfaat dari pembuatan rencana jalur terbang?
9. Jelaskan mengapa metode satelit penginderaan jauh merupakan alternatif dalam pemetaan kadastral?
10. Uraiakan apa yang Saudara ketahui tentang citra satelit yang banyak digunakan oleh BPN!

Kunci Jawaban

1. Telah jelas, lihat pada halaman 1.
2. Telah jelas, lihat pada uraian awal materi.
3. Langkah pokok ini terkait pada pemetaan pada umumnya, dan jawaban dapat ditemukan pada uraian filosofi dan sifat-sifat dasar peta.

4. Untuk menjelaskan perbandingan luas cakupan dan skala dari tiga metode tersebut dapat dilihat pada tabel berikut:

Tabel 1. Perbandingan pemetaan terestris, fotogrametris dan citra satelit

<table>
<thead>
<tr>
<th>No.</th>
<th>Uraian</th>
<th>Terestris</th>
<th>Fotogrametris</th>
<th>Citra Satelit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Luas cakup</td>
<td>Sempit</td>
<td>Sempit-sangat luas</td>
<td>Sempit-sangat luas</td>
</tr>
<tr>
<td>2</td>
<td>Skala</td>
<td>Besar</td>
<td>Sedang-besar</td>
<td>Kecil-besar</td>
</tr>
<tr>
<td>3</td>
<td>Waktu pengukuran</td>
<td>Lama</td>
<td>Sedang</td>
<td>Cepat</td>
</tr>
<tr>
<td>4</td>
<td>Periode untuk pengukuran ulang/revisi</td>
<td>Jangka lama</td>
<td>Sedang -lama</td>
<td>Cepat</td>
</tr>
</tbody>
</table>

5. Aplikasi dari Small Format Fotogrametrianatara lain untuk: Pemantauan daerah bencana yang relatif tidak luas, pemetaan lokasi tertentu seperti kampus, situs dan tempat bersejarah lainnya, untuk kegiatan survei awal pekerjaan rekayasa dan berbagai revisi peta.

6. Telah jelas, lihat uraian diawal materi.

7. Telah jelas, diuraikan pada awal materi.

8. Manfaat dari pembuatan rencana jalur terbang diantaranya:
 a. Untuk merencanakan dari mana pesawat terbang paling efektif dan efisien dalam kegiatan pemotretan.
b. Untuk melihat jalur terbang secara keseluruhan kaitanya dengan jarak pemotretan dan jumlah film yang diperlukan.

9. Metode satelit penginderaan jauh merupakan alternatif dalam pemetaan kadastral dikarenakan citra penginderaan jauh saat ini mempunyai resolusi spasial yang tinggi sementara dalam pengukuran kadastral diperlukan peta-peta dengan skala besar.

10. Uraikan apa yang Saudara ketahui tentang citra satelit yang banyak digunakan dalam pemetaan kadastral!

Rangkuman

Metode fotogrametri selain untuk pemetaan rupa bumi (lazim disebut pemetaan topografi, baik skala kecil sampai peta skala besar) dapat dimanfaatkan untuk berbagai keperluan informasi lahan yang dalam kelompok fotogrametri sebagai hasil GIS atau *Geographic Information System* (SIG = Sistem Informasi Geografis)

Prinsip dalam pengukuran kadastral adalah harus memenuhi kaidah teknis pengukuran dan pemetaan sehingga bidang tanah yang diukur dapat dipetakan, diketahui letak dan batasnya di atas peta serta dapat direkonstruksi batas-batasnya di lapangan. Dalam bidang kadastral hasil pemetaan secara fotogrametri meliputi foto udara, peta dasar pendaftaran berupa peta foto maupun peta garis dan blow up foto.
Penggunaan teknologi pemetaan di Badan Pertanahan Nasional melalui teknik indera dalam hal ini penggunaan Citra Satelit pada awalnya hanya digunakan untuk pemetaan Tata Guna Tanah. Hal ini dapat dimengerti bahwa citra satelit pada era tahun 80-an dan awal 90-an masih mempunyai resolusi yang rendah semacam Citra Spot dengan resolusi 20 meter dan citra Landsat dengan resolusi 30 meter. Mengingat rendahnya resolusi spasial ini kedua citra tersebut hanya layak untuk diterapkan dalam pembuatan peta Tata Guna Guna dengan skala sedang dan kecil.

Melihat perkembangan teknologi indera dengan munculnya Citra Satelit Ikonos dengan resolusi 1 meter dan Quick Bird dengan resolusi 0.6 meter tidak menutup kemungkinan teknik ini dapat diaplikasikan dalam bidang kadastral yang memerlukan skala besar.
1. ASP adalah perkumpulan fotogrametrian dari negara:
 a. Amerika Serikat
 b. Inggris
 c. Kanada
 d. Perancis

2. Dalam foto udara terekam obyek buatan manusia, kecuali:
 a. Jalan raya
 b. Dasar sungai
 c. Gedung
 d. Waduk

3. Yang termasuk dalam fotogrametri interpretative, adalah:
 a. Posisi obyek
 b. Bentuk obyek
 c. Klasifikasi tutupan lahan
 d. Volume obyek

4. Foto udara format kecil mempunyai ukuran:
 a. 36 mm x 24 mm
 b. 23 cm x 23 cm
 c. 15 cm x 15 cm
 d. 36 cm x 24 cm

5. Berikut ini produk pemetaan fotogrametri dibidang kadastral, kecuali:
 a. Peta foto
 b. Peta dasar pendaftaran
 c. Peta topografi
 d. Blowup foto
6. Berikut ini beberapa hal yang menyebabkan peta menjadi kadaluwarsa, kecuali:
 a. Pesatnya perubahan bentuk obyek per satuan waktu
 b. Pola kebijakan administrasi tata ruang daerah (batas wilayah)
 c. Perubahan alami karena banjir tanah longsor dll.
 d. Penggandaan jumlah peta yang terlalu sedikit

7. Pada format foto udara standar skala 1: 5000 mempunyai luas cakupan area di lapangan sebesar:
 a. 132,25 Ha
 b. 230,75 Ha
 c. 250 Ha
 d. 500 Ha

8. Jarak antara satu pemotretan ke pemotretan berikutnya di lapangan disebut dengan:
 a. Basis mata
 b. Basis udara
 c. Basis instrument
 d. Basis foto

9. Foto udara standar dengan skala 1 : 10.000, mempunyai pertampalan kemuka 70% dan pertampalan kesamping 30%, maka luas efektif model sebesar:
 a. 210 Ha
 b. 111 Ha
 c. 70 Ha
 d. 30 Ha

10. Pada soal no 9 di atas, apabila luas daerah yang dipetakan 20.000 Ha, maka jumlah foto yang dibutuhkan sebanyak:
Cocokan jawaban Saudara dengan kunci jawaban tes formatif yang terdapat di bagian akhir modul ini. Hitunglah jawaban Saudara yang benar, kemudian gunakan rumus di bawah ini untuk mengetahui tingkat penguasaan Saudara terhadap materi modul ini.

Rumus:
Tingkat penguasaan = \(\frac{Jumlah\ jawaban\ Saudara\ yang\ benar}{10} \times 100\% \)

Arti tingkat penguasaan yang Saudara peroleh adalah:

90 – 100% = Baik sekali
80 – 90% = Baik
70 – 80% = Cukup
\(\leq 70\% \) = Kurang

Bila Saudara memperoleh tingkat penguasaan 80% atau lebih, saudara dapat meneruskan dengan kegiatan belajar selanjutnya. Sedangkan jika tingkat penguasaan saudara masih berada di bawah 80%, saudara diwajibkan mengulang kegiatan belajar ini, terutama bagian yang belum saudara kuasai secara baik.

Kompetensi dasar yang diharapkan agar mahasiswa mampu menginterpretasi informasi dari citra satelit dan citra foto juga mampu membedakan klasifikasi foto udara. Melalui pemahaman ini diharapkan mahasiswa mampu membedakan ragam foto udara dan mengetahui batasan foto udara sehingga dapat dipergunakan dalam pekerjaan pemetaan.

Pada modul ini akan dipelajari tentang bagaimana melakukan interpretasi citra dan memahami klasifikasi foto udara berdasar posisi sumbu kamera yang berada dipermukaan bumi, panjang gelombang yang digunakan, skala foto yang dihasilkan dan media perekam yang digunakan pada saat melakukan perekaman obyek di permukaan bumi.

A. Pengertian Interpretasi Citra dan Ragam Foto-udara

Foto udara merupakan rekaman fotogrametris obyek di atas permukaan bumi yang pengambilannya dilakukan dari udara. Obyek yang terekam dalam foto
udara meliputi semua kenampakan tanpa bisa untuk diseleksi terlebih dahulu. Dalam kondisi tertentu gambaran ini sangat menguntungkan karena melalui media foto udara bisa didapatkan gambaran semua obyek dengan kondisi dan tipe yang sesuai dengan bentuk aslinya. Akan tetapi dalam beberapa hal karena semua unsur terkem menjadikan informasi menjadi sulit diterjemahkan.

Untuk itu diperlukan cara melakukan interpretasi pada citra/foto udara menggunakan unsur-unsur/element interpretasi yaitu ;
1. Rona (tone)/Warna, yaitu tingkat keabuan pada foto hitam putih atau intensitas warna pada foto berwarna.
2. Bentuk (shape), merupakan konfigurasi wujud obyek seperti kotak, melingkar, memanjang dst.
3. Ukuran (size), seperti panjang, pendek, besar, kecil, luas, sempit dst.
4. Pola (pattern), konfigurasi obyek misal mengelompok, menyebar.
5. Tekstur, yaitu tingkat kehalusan atau kekasaran gambaran obyek.
6. Bayangan (shadow), mencerminkan adanya obyek yang lebih tinggi.

Selain interpretasi secara visual menggunakan unsur-unsur interprrtasi sebagaimana tersebut diatas, interpretasi juga dapat dilakukan secara digital berdasarkan nilai pantulan spektral obyek yang terkem pada citra digital.

Data dalam bidang fotogrametri dapat diberdayakan atas data yang bersifat metrik (kuantitatif) dan non metrik (kualitatif).

2. Data non metric adalah data yang bersifat kualitatif dan menunjukkan mutu atau perbandingan dari unsure-unsur obyek yang ada diatas bidang foto. Untuk tujuan tertentu data ini sangat menunjang dalam pembuatan peta dalam tema-tema tertentu.

Secara garis besar obyek yang terekam dibedakan menjadi dua yaitu:

a. Bentang alami yang meliputi bukit, lembah, sungai, rawa-rawa, danau, gunung, laut dsb.

b. Bentang buatan manusia seperti bangunan/gedung, perumahan, waduk, jalan raya, rel kereta api dsb.

B. Informasi Tepi dan Titik Pusat Foto Udara

Apabila sebuah foto udara dicermati selain didapatkan informasi grafis sebagaimana dikemukakan diatas juga akan didapatkan informasi tepi yang menguraikan seluk beluk tentang foto udara yang bersangkutan. Informasi tepi dari sebuah foto udara dapat dijelaskan seperti gambar di bawah:
Gambar 1. Sketsa lembar foto udara

Keterangan :

a. tanda fidusial
b. nivo kotak
c. waktu
d. altimeter
e. jenis lensa atau kamera
f. nomor foto
g. konstanta kamera
h. catatan lain-lain (nama perusahaan dan tanggal pemotretan).

Tanda fidusial tiap foto udara terletak pada masing-masing sudut foto udara atau pada bagian tengah tepi foto udara, sehingga jumlahnya ada empat atau delapan tanda fidusial. Tanda fidusial yang terletak pada sudut foto pada umumnya berupa garis silang tipis yang mengarah ke sudut lain dihadapannya, sedangkan apabila tanda fidusial terletak pada bagian tengah foto pada umumnya berupa lekukan atau tonjolan segitiga kecil yang alasnya searah garis tepi foto.
Kegunaan tanda fidusial adalah untuk menentukan titik pusat foto atau titik prinsipal (*principle point*) atau Titik Utama (TU) foto udara, yaitu titik potong dua buah garis yang ditarik dari dua tanda fidusial yang berhadapan.

Gambar 2. Tanda fidusial, titik dasar (*principle point*) dan sumbu koordinat foto udara tunggal
Pada foto udara yang benar-benar vertikal, ketiga titik pusat yaitu titik prinsipal, titik nadir dan titik isocenter berimpit menjadi satu titik. Sehingga pada foto udara dapat dikatakan memiliki satu titik pusat foto dan atau memiliki tiga titik pusat foto semuanya benar.

Gambar 3. Lokasi relatif Titik Prinsipal, Titik Nadir dan Isocenter

Titik prinsipal yaitu titik tembus sumbu kamera pada foto udara dengan arah sumbu sumbu kamera tegak lurus terhadap daerah yang dipotret yang dianggap sebagai bidang datar. Titik prinsipal inilah yang merupakan titik potong antara dua garis yang ditarik dari pasangan tanda fidusial yang berhadapan. Titik prinsipal ini merupakan pusat geometri foto udara.
Titik Nadir adalah titik yang terletak tegak lurus (garis berat) dibawah pusat kamera pada saat pemotretan.. Untuk menentukan letak Titik Nadir pada foto udara diperlukan “Stereoscopic Plotting Instrument” yang rumit dan titik kontrol lapangan yang mahal. Dalam keadaan tertentu maka titik nadir dapat ditentukan dengan mudah, yaitu berupa titik potong antara perpanjangan garis-garis yang ditarik dari puncak bangunan yang tinggi seperti tercermin pada gambar berikut.

Gambar 4. Penentuan letak titik nadir berdasarkan perpanjangan garis yang ditarik dari bangunan vertikal yang tinggi.

Isocenter ialah titik pada foto udara yang terletak ditengah garis antara titik prinsipal dan titik nadir.
C. Klasifikasi Foto Udara

Perbincangan mengenai pengelompokan atau klasifikasi jenis foto udara sangat beragam tergantung dari sudut pandang apa foto udara tersebut dikelompokan.

b. Pengelompokan foto berdasarkan skala fotonya. Contoh Foto skala besar, skala menengah dan skala kecil

c. Pengelompokan foto berdasarkan jenis kamera yang digunakan, yaitu foto yang direkam dengan kamera tunggal (satu saluran panjang gelombang), atau dengan kamera jamak (satu kamera dengan lebih dari satu lensa untuk perekaman pada berbagai saluran sekaligus).

d. Pengelompokan foto udara berdasarkan sumbu kameranya. Contoh Foto vertikal (vertical photograph) dan foto condong (oblique photograph)

Sehubungan dengan geometrinya, maka yang erat kaitannya dengan fotogrametri adalah klasifikasi foto berdasarkan sumbu kameranya. Berdasarkan posisi sumbu kamera terhadap permukaan bumi, foto udara dibedakan atas 2 (dua) macam yaitu foto udara vertical dan foto udara miring (oblique).

Foto udara vertical meliputi foto udara tegak sempurna (sumbu kamera tegak lurus dengan permukaan bumi) dan foto senget (tilt photograph sedangkan foto udara miring meliputi foto udara miring (normal oblique) dan foto udara miring sekali (high oblique). Penting untuk diperhatikan bahwa pada foto senget dengan kemiringan sumbu kamera $< 3^\circ$ melalui proses tertentu masih dapat dikoreksi sehingga mendekati foto udara tegak sempurna. Untuk foto udara miring dan miring sekali skala foto menjadi tidak seragam bahkan untuk foto udara miring sekali akan tampak adanya horizon.
Gambar 5. Posisi sumbu kamera vertikal dan gambaran bujursangkar pada bidang foto udara tetap berbentuk bujursangkar.

Gambar 6. Posisi sumbu kamera miring dan gambaran bujursangkar pada bidang foto udara terlihat seperti trapesium.
Gambar 7. Posisi sumbu kamera sangat miring dan gambaran bujur sangkar pada bidang foto udara yang tampaknya horizon.

Gambar 8. Bentuk Liputan Foto Udara

Keterangan:
A : Foto udara tegak
B : Foto udara agak condong
C : Foto udara sangat condong

Dari gambar di atas tampak lebih jelas dalam memahami perbedaan foto udara tegak, agak condong dan sangat condong.
Pada foto udara tegak, apabila daerah yang terpahat terdiri dari blok-blok berbentuk bujur sangkar, maka blok bujur sangkar tetap tergambarkan sebagai bujur sangkar, tetapi pada foto agak condong blok bujur sangkar tergambarkan sebagai trapezium dan pada foto sangat condong bentuk blok menjadi trapezium dan tampak cakrawalanya.

e. Skala pada tiap bagian foto lebih seragam
f. Penentuan arah pada foto udara vertikal lebih mudah. Perkiraan arah dapat ditentukan seperti penentuan arah pada peta.
g. Dalam batas tertentu, foto udara vertikal dapat dipakai sebagai substitusi peta.
h. Foto udara vertikal lebih mudah diinterpretasi, karena disamping skalanya lebih seragam, juga tidak banyak obyek yang terlindung oleh obyek lainnya.

Meskipun demikian menurut Sutanto, 1989. foto condong juga mempunyai kelebihan bila dibanding foto vertikal, yaitu:
a. Luas liputannya beberapa kali lipat bila dibanding dengan liputan foto vertikal.
b. Untuk daerah yang sering tertutup oleh awan, masih ada kemungkinan menembus celah-celah awan bila dilakukan pemotretan condong.
c. Gambaran yang disajikan lebih mirip dengan apa yang dilihat sehari-hari dari tempat yang relatif tinggi.
d. Obyek tertentu seperti goa yang tidak tampak pada foto udara vertikal, ada kemungkinan dapat dikenali pada foto condong.

D. Distorsi dan Displacement pada Foto Udara

Berbeda dengan peta yang memiliki proyeksi ortogonal, maka foto udara dibuat dengan proyeksi sentral sehingga dapat menimbulkan kesalahan yang berupa distorsi dan "displacement". Distorsi adalah pergeseran letak suatu obyek pada foto udara yang menyebabkan perubahan karakteristik perspektif obyek, sedangkan displacement adalah pergeseran letak suatu obyek pada foto udara yang tidak menyebabkan perubahan karakteristik perspektif obyek.

Dua kesalahan ini disebabkan oleh faktor-faktor sebagai berikut:

<table>
<thead>
<tr>
<th>DISTORSI</th>
<th>DISPLACEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pengkerutan film dan kertas foto</td>
<td>1. Lengkung permukaan bumi</td>
</tr>
<tr>
<td>2. Refraksi atmosferik berkas sinar</td>
<td>2. "Tilt"</td>
</tr>
<tr>
<td>3. Gerakan obyek pada saat</td>
<td>3. Topografi atau relief, termasuk tinggi obyek</td>
</tr>
<tr>
<td>pemotretan</td>
<td></td>
</tr>
<tr>
<td>4. Distorsi lensa</td>
<td></td>
</tr>
</tbody>
</table>

Kesalahan yang sering dibahas untuk kegiatan fotogrametri adalah kesalahan akibat distorsi lensa, Tilt, dan pergeseran letak oleh topografi atau relief, sedangkan kesalahan lainnya sering diabaikan kecuali untuk pemetaan dan pengukuran pada foto udara dengan ketelitian tinggi.

Pergeseran letak oleh "Tilt" (Tilt displacement) disebabkan karena pesawat udara atau wahana lainnya tidak dalam kedudukan horisontal pada saat
pemotretan. Kedudukan demikian menyebabkan kedudukan kamera yang miring, tidak horisontal pada saat pemotretan. Kemiringan sehubungan dengan kemiringan pesawat ini disebut "tilt".

Lo (1976) mengutarakan bahwa ada tiga macam "tilt" yang masing-masing didasarkan atas putarannya sepanjang satu sumbu seperti digambarkan sebagai berikut ini.

Gambar 10. Kemiringan pesawat pada sumbu x dan y yang mempengaruhi kedudukan kamera

Gambar 11. Putaran pada sumbu x, y, dan z yang menyebabkan Anggukan, Gulingan dan Gelengan
Ketiga macam "Tilt" tersebut adalah sebagai berikut:

1. Q (Phi)-tilt atau tilt longitudinal atau Tip yang disebabkan oleh putaran sepanjang sumbu y. Moncong pesawat terbang menukik atau menengadah

2. W (Omega)-tilt atau tilt lateral yang disebabkan oleh putaran sepanjang sumbu x. Sayap pesawat terbang miring.

3. K (Kappa)-tilt atau Swing yang disebabkan oleh putaran sepanjang sumbu z.

Kesalahan oleh "Tilt" bersifat radial terhadap "Isocenter", dimana letak obyek diatas isocenter tergeser kedalam, sedangkan obyek dibawah isocenter tergeser keluar.

Pembahasan kesalahan akibat pergeseran letak oleh topografi atau relief akan dibahas secara tersendiri dalam subbab bentuk dan ukuran obyek pada foto udara.

E. Geometri Foto Udara

Sifat dasar dari sebuah foto udara adalah bahwa setiap bayangan diatas foto sesuai dengan titik tunggal dari obyek yang difoto. Hubungan geometrik muncul antara posisi spasial relatif dari bayangan dua dimensi di atas foto dan posisi yang sebenarnya dalam tiga dimensi dari obyek.

Proyeksi pada foto udara adalah proyeksi sentral, artinya garis-garis proyeksi dari obyek ke bidang proyeksi (bidang negatif) melalui suatu titik pusat proyeksi dimana bayangan pada kedudukan negatif ini terbalik, sedangkan pada kedudukan positif posisi bayangan sesuai dengan keadaan sebenarnya.

Elemen geometrik dasar pada foto udara dilukiskan pada gambar berikut sebagai berkas sinar obyek medan tergambar pada bidang negatif film sesudah berpotongan pada lensa kamera L. Negatif tersebut terletak dibelakang lensa dengan jarak sama dengan panjang fokus lensa (f), demikian juga apabila dilukiskan ukuran kertas cetak (film positif) sama dengan ukuran negatifnya, posisi citra positif dapat dilukiskan datar dengan jarak f. Apabila citra foto positif
memiliki jarak f yang lebih besar atau lebih kecil, maka citra foto tersebut merupakan fungsi skala.

Gambar 9. Unsur geometrik dasar foto udara vertikal

Pembahasan mengenai geometri foto udara akan difokuskan pada penentuan skala foto dan hitungan koordinat titik pada media foto udara, sehingga diharapkan mampu menggambarkan dan menerangkan geometri foto dan mengetahui berbagai cara penentuan skala foto udara dan bagaimana menentukan posisi suatu obyek di bidang foto.
E.1. Skala Foto Udara

Skala merupakan perbandingan jarak dibidang foto dengan jarak pada permukaan bumi. Untuk menyatakan besaran skala dapat dilakukan dengan berbagai cara yaitu:

1. Unit Kesetaraan yaitu membandingkan nilai di foto udara dengan nilai sesungguhnya dipermukaan bumi seperti 1 mm di foto udara sama dengan 100 meter di permukaan bumi atau 1 mm = 100 m. Jadi dapat diartikan jarak 1mm di foto udara sama dengan 100 meter di lapangan.

2. Angka pecahan tanpa besaran yaitu dituliskan dengan angka pecahan sehingga ada pembilang dan ada penyebut. Pembilang biasanya dituliskan dengan angka 1 (satu) dan penyebut merupakan angka factor skala. Sebagai contoh 1/5000, 1/10000 atau 1/15000. Nilai ini diterjemahkan dengan satuan yang sama yaitu 1 mm = 5000mm atau 1cm = 5000cm dan sebagainya.

Untuk menentukan skala foto udara dapat ditempuh dengan berbagai cara yaitu:

1. Membandingkan panjang fokus kamera yang digunakan dengan tinggi terbang pesawat. Panjang fokus kamera dapat dibaca pada informasi tepi foto udara demikian juga dengan tinggi terbang dapat dibaca pada informasi tepi tersebut.

Rumus untuk mencari skala adalah:
\[S = \frac{f}{H} \]

\[S = \text{skala foto udara} \]
f = panjang fokus kamera
H = tinggi terbang pesawat diatas datum

Rumus yang digunakan adalah: \(S = \frac{df}{dL} \)

\(S \) = skala foto udara
\(df \) = jarak di bidang foto udara
\(dL \) = jarak di permukaan bumi

Skala dapat dihitung dengan rumus \(S = \frac{(df/dp)(Sp)} \)

\(S \) = skala foto udara
\(df \) = jarak di bidang foto udara
\(dp \) = jarak di peta
\(Sp \) = skala peta yang digunakan

E.2. Skala Foto Udara Tegak di Atas Bidang Datar

Perhatikan gambar berikut yang merupakan gambaran dua dimensi foto udara tegak yang dibuat di atas bidang/medan datar. Dengan prinsip kesebangunan antar segita Lab dan segitiga LAB, maka skala merupakan perbandingan jarak diatas bidang foto dengan jarak di lapangan juga merupakan
perbandingan panjang fokus kamera dengan tinggi terbang pesawat. Apabila tinggi pesawat dijadikan parameter maka semakin tinggi pesawat skala akan semakin kecil, dengan kata lain skala berbanding terbalik dengan tinggi terbang.

\[S = \frac{ab}{AB} = \frac{f}{H} \]

Gambar 12. Hubungan foto udara dengan permukaan bumi

Keterangan:

L = titik pemotretan
F = panjang fokus kamera
H = tinggi terbang pesawat
Ab = jarak di bidang foto udara
AB = jarak di permukaan bumi
E.3. Skala Foto Udara Tegak di Atas Bidang Yang Tidak Datar

Foto udara pada daerah yang berbukit merupakan salah satu gambaran yang sangat baik untuk menerangkan bagaimana mencari skala foto di atas bidang yang tidak datar. Gambar di bawah menunjukkan bahwa skala foto udara padatipketinggian titik dinyatakan sebagai \(S = \frac{f}{(H-h)} \). Apabila masing-masing obyek/titik A, B, C dan D mempunyai ketinggian diatas datum sebesar ha, hb, hc dan hd maka skala pada titik yang bersangkutan dapat dijelaskan seperti gambar di bawah.

![Diagram](attachment:image.png)

Gambar 13. Foto udara pada permukaan bumi yang tidak datar

Dari gambar terlihat bahwa skala pada tiap titik dapat dinyatakan dengan:

\[
\begin{align*}
S_a &= \frac{f}{(H-ha)} \\
S_b &= \frac{f}{(H-hb)} \\
S_c &= \frac{f}{(H-hc)} \\
S_d &= \frac{f}{(H-hd)}
\end{align*}
\]
E.4. Skala foto rata-rata

Dikarenakan pada daerah berbukit skala foto udara akan berbeda untuk tiap-tiap titik maka untuk menghitung skala digunakan skala foto rata-rata. Skala foto rata-rata atau rerata didasarkan pada ketinggian rerata daerah yang terpotret, dan dapat dituliskan \(Sr = \frac{f}{(H-h)r}\), dengan \(Sr\) adalah skala foto udara rerata dan \(hr\) adalah tinggi rerata.

E.5. Pergeseran Relief

Sebagai contoh pergeseran relief \(p'p = \Delta r \), \(r \) adalah jarak dari pusat foto ke bayangan yang tampak \(p \), bila tinggi terbang di atas datum \(H \), maka pergeseran relief :

\[
\Delta r = \frac{h}{H} \frac{1}{r}
\]

Berdasarkan rumus di atas pergeseran relief akan bertambah besar jika :

a. Jarak radial (\(r \)) dari titik nadir (pusat foto vertical) bertambah besar.

b. Ketinggian suatu titik terhadap datum (\(h \)) bertambah besar.

c. Tinggi terbang semakin rendah.

E.6. Koordinat Foto Udara

Melalui media foto udara untuk berbagai keperluan dibutuhkan pengukuran fotografik. Berbagai jenis pengukuran yang dapat dilakukan berupa pengukuran koordinat titik, pengukuran jarak dan pengukuran sudut antara dua titik. Dalam proses pengukuran umumnya dilakukan di atas bidang positif, film
dan kaca. Pengukuran juga dapat dilakukan di atas bidang negative akan tetapi ini jarang dilakukan karena akan merusak negative dan negative inilah yang digunakan untuk proses reproduksi foto udara.

Posisi suatu titik di bidang foto ditentukan dengan system koordinat. Bagi foto udara dengan tanda fidusial samping digunakan system koordinat rektanguler yang dibentuk dengan menghubungkan dua tanda fidusial yang berhadapan seperti gambar di bawah. Sumbu x diambil dari garis fidusial yang paling mendekati dengan arah jalur terbang sedangkan sumbu y merupakan garis fidusial yang tegak lurus dengan sumbu x. Sebagai titik awal hitungan diambil titik potong antara dua garis fidusial dan titik ini sering disebut sebagai pusat kolimasi (center of collimation). Bagi kamera pemetaan yang teliti titik ini sangat mendekati dengan titik utama foto.

Gambar 15. Sistem koordinat fotografik tanda fidusial tepi
Pada gambar di atas apabila titik a dan b diketahui koordinatnya maka dapat ditentukan:

1. Jarak radial titik 0 ke titik a dan jarak radial ke titik b dengan rumus:
 Jarak \(oa = \sqrt{xa^2 + ya^2} \);
 jarak \(ob = \sqrt{xb^2 + yb^2} \)

2. Jarak antara titik a dan titik b dengan rumus:
 Jarak \(ab = \sqrt{(xa - xb)^2 + (ya - yb)^2} \)

3. Sudut \(\alpha \) dan \(\beta \) dengan rumus goniometri sederhana yaitu:
 Sudut \(\alpha = \text{arc} \, \text{tg} \, (ya/xa) \);
 Sudut \(\beta = \text{arc} \, \text{tg} \, (yb/xb) \);

Untuk foto udara dengan tanda fidusial di pojok-pojok bidang foto (fidusial sudut) pengukuran koordinat dilakukan terhadap sistem sumbu x’dan y’ yang ditarik melalui tanda-tanda fidusial. Seperti pada gambar di bawah misalkan titik a, posisi dinyatakan dengan koordinat terukur xa’ dan ya’. Dalam sistem sumbu konvensional (x, y) dengan origin di titik utama foto udara maka hasil tersebut dibawa ke koordinat xa dan ya, penyelesaiannya sebagai berikut:

\[xa = xa’ - xo \]
\[ya = ya’ - yo \]

Dengan \(xo = (XB’ + XC’)/4 \) dan \(yo = (YD’ + YC’)/4 \)
Gambar 16. Koordinat foto dengan tanda fidusial sudut

E.7. Metode Trilaterasi untuk Pengukuran Koordinat Foto

Selain dengan cara pengukuran yang dijelaskan di atas, koordinat foto juga dapat dilakukan dengan jaring-jaring yang berbentuk segitiga. Untuk proses hitungan diperlukan panjang dari tiap sisi segitiga dan selanjutnya dapat dihitung dengan rumus trigonometri. Metode ini dapat diterapkan baik pada foto dengan fidusial tepi maupun fidusial sudut.
Gambar 17. Pengukuran koordinat foto dengan metode Trilaterasi

Seperti pada gambar diperlukan data berupa koordinat titik fidusial A dan B, berikutnya perlu diukur jarak titik E ke fidusial A (sa) dan jarak titik E ke fidusial B (sb), selanjutnya hitungan dapat dilakukan dengan prosedur sebagai berikut:

1. Hitung jarak fidusial A dan B.
2. Hitung sudut θ dengan rumus cosinus
 \[
 \cos \theta = \frac{sa^2 + (AB)^2 - sb^2}{2 \cdot sa \cdot sb}
 \]
3. Hitung sudut δ dengan rumus tangent.
4. Sudut α dicari dengan $\alpha = \delta - \theta$
5. Hitung koordinat titik E
 \[
 X_E = sa \cos \alpha + x_a
 \]
 \[
 Y_E = -(sa \sin \alpha) + y_a
 \]
Latihan

1. Apakah arti data metrik dan non metrik?
2. Sebutkan beberapa informasi yang terdapat dalam informasi tepi foto udara dan apakegunaannya!
3. Sebutkan beberapa informasi grafis dari sebuah foto udara!
4. Sebutkan atas dasar apa saja foto udara dapat diklasifikasikan!
5. Berdasarkan sumbu kamera bandingkan tentang sifat kemiringannya, bentuk liputan, cakupan daerah dan skalanya!
6. Apabila diketahui panjang fokus kamera udara 152 mm dan tinggi terbang pesawat 1520m di atas datum (diatas permukaan air laut rata-rata), hitung skala foto udara yang bersangkutan!
7. Panjang suatu obyek a-b diukur diatas bidang foto 25 mm. Obyek tersebut diidentifikasi dilapangan A-B selanjutnya diukur dengan meteran dan didapatkan hasil ukuran sebesar 125 meter. Hitung skala foto tersebut!
8. Pengukuran skala foto dilakukan dengan membandingkan dengan peta topografi skala 1 : 25.000. Apabila jarak obyek a-b di bidang foto 10 cm dan dilakukan identifikasi di atas peta sehingga didapatkan hasil jarak A-B di peta 2 cm. Hitung skala foto udara tersebut!
9. Foto udara pada daerah berbukit seperti gambar 6 di atas, diambil dari ketinggian pesawat 1520m/dpl dan menggunakan kamera udara dengan panjang fokus kamera 152 mm. Apabila tinggi titik A,B,C dan D di permukaan bumi berturut-turut 100m/dpl, 250m/dpl, 300m/dpl dan 350m/dpl, hitung skala foto reratanya.
10. Koordinat titik a dan b pada gambar 8 di atas adalah sebagai berikut; xa = 49,87 mm, ya = 39,24 mm sedangkan xb = 79,30 mm dan yb = -62,81 mm. Tentukan jarak dibidang foto untuk jarak ab, jarak radial oa dan ob serta sudut aob (< 180°)
11. Koordinat \(x', y' \) pada gambar 9 diatas ditentukan berdasarkan pengukuran sebuah diapositif dengan tanda fidusialsudut. Hitung koordinat titik 1, 2 dan 3 pada sistem koordinat foto x, y konvensional.

<table>
<thead>
<tr>
<th>No.</th>
<th>Titik</th>
<th>Koordinat Foto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(x') (mm)</td>
</tr>
<tr>
<td>1</td>
<td>Fidusial A</td>
<td>0,00</td>
</tr>
<tr>
<td>2</td>
<td>Fidusial B</td>
<td>211,88</td>
</tr>
<tr>
<td>3</td>
<td>Fidusial C</td>
<td>211,88</td>
</tr>
<tr>
<td>4</td>
<td>Fidusial D</td>
<td>0,00</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>203,28</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>125,91</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>57,40</td>
</tr>
</tbody>
</table>

12. Seperti pada gambar 10 di atas diketahui koordinat fidusial A dan B serta data ukuran \(sa \) dan \(sb \) sebagai berikut:

<table>
<thead>
<tr>
<th>Titik</th>
<th>Koordinat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x) (mm)</td>
</tr>
<tr>
<td>A</td>
<td>-111,94</td>
</tr>
<tr>
<td>B</td>
<td>0,00</td>
</tr>
<tr>
<td>E</td>
<td>?</td>
</tr>
</tbody>
</table>

\(Sa = 143,91 \) mm
\(Sb = 65,23 \) mm

Kunci Jawaban

1. Telah jelas, lihat uraian diawal materi.
2. Informasi tepi sebuah foto udara diantaranya adalah:
a. tanda fidusial digunakan dalam proses hitungan koordinat foto dan untuk menentukan titik utama foto udara.

b. nivo kotak, dapat menggambarkan bagaimana kondisi kamera udara pada saat pemrotetan apakah dalam posisi datar atau tidak.

c. Waktu, menerangkan kapan pelaksanaan dan jamberpa saat pemrotetan tersebut juga dapat untuk menentukan orientasi arah utara dengan memperhatikan bayangan obyek.

d. Altimeter, untuk mengetahui ketinggian pesawat pada saat pemrotetan dilaksanakan dsb.

3. Beberapa informasi grafis darimedia foto udara diantaranya jalan aspal, jalan tanah, bangunan (kampus, gedung pemerintahan, masjid, gereja, stadion rumah tinggal dsb), penggunaan tanah (pertanian, pemukiman, perkotaan, dsb)

4. Telah jelas, lihat uraian materidi atas.

5. Perbandingan dapat dilihat pada tabel di bawah:

<table>
<thead>
<tr>
<th>Uraian</th>
<th>FU tegak</th>
<th>FU miring</th>
<th>FU sangat miring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumbu kamera</td>
<td>Tegak/ tilt < 3°</td>
<td>miring</td>
<td>Miring sekali/tampak horison</td>
</tr>
<tr>
<td>Bentuk liputan</td>
<td>Bujur sangakar</td>
<td>Trapesium</td>
<td>Trapesium</td>
</tr>
<tr>
<td>Cakupan daerah</td>
<td>Sempit</td>
<td>Luas</td>
<td>Sangat luas</td>
</tr>
<tr>
<td>Skala</td>
<td>Skala seragam</td>
<td>Tidak seragam, makin jauh kecil</td>
<td>Tidak seragam, makin jauh kecil</td>
</tr>
</tbody>
</table>

6. Berdasar soal tersebut dapat diketahui bahwa panjang focus kamera (f = 152 mm) dan tinggi terbang (H=1.520 m/msl),
maka skala didapatkan sebesar \[S = \frac{152}{1.520.000} = 1 : 10.000 \]

Catatan:

i. Untuk proses hitungan satuan harus disamakan, disini digunakan satuan millimeter sehingga tinggi terbang dituliskan 1.520.000 mm.

ii. Untuk mendapatkan besaran factor skala dilakukan hitungan pembilang dibagi penyebut. Akan sangat salah jika skala tersebut dituliskan 0,0001.

7. Jawaban soal no 2 diatas adalah sebagai berikut:

\[\text{Jarak a-b} = 25 \text{ mm} \]
\[\text{Jarak A-B} = 125m = 125.000 \text{ mm} \]
\[S = \frac{25}{125.000} = 1 : 5.000 \]

Jadi skala foto udara tersebut 1: 5.000

8. Jawaban soal no 3 adalah sebagai berikut:

\[df = 10 \text{ cm} \]
\[dp = 2 \text{ cm} \]
\[Sp = 1 : 25.000 \]
\[S = \left(\frac{10}{2}\right) \cdot \frac{1}{25.000} = 1 : 5.000 \]

Jadi skala foto udara tersebut 1:5.000

9. Diketahui: \[H = 1520m/\text{dpl} \]
\[f = 152 \text{ mm} \]
\[ha = 100m/\text{dpl} \]
\[hb = 250m/\text{dpl} \]
\[hc = 300m/\text{dpl} \]
\[hd = 350m/\text{dpl} \]
\[hr = \frac{(100+250+300+350)}{4} = 250m \]
\[Sr = 0,152/ (1520-250) = 1 : 8.355 \]

Jadi skala reratanya adalah 1 : 8.355
10. Jawaban:
Jarak ab = \(\sqrt{((xa - xb)^2 + (ya - yb)^2)} \)
\[= \sqrt{((49,87 - 79,30)^2 + (39,24 - (-62,81))^2)} \]
\[= 106,21 \text{ mm} \]

Jarak oa = \(\sqrt{(xa^2 + ya^2)} \)
\[= \sqrt{(49,87^2 + 39,24^2)} \]
\[= 63,46 \text{ mm} \]

Jarak ob = \(\sqrt{(xb^2 + yb^2)} \)
\[= \sqrt{(79,30^2 + (-62,81)^2)} \]
\[= 101,16 \text{ mm} \]

Sudut aob = Sudut \(\alpha \) + Sudut \(\beta \)
\[= \arctan \left(\frac{ya}{xa}\right) + \arctan \left(\frac{yb}{xb}\right) \]
\[= \arctan \left(\frac{39,24}{49,87}\right) + \arctan \left(\frac{62,81}{79,30}\right) \]
\[= 38^0 11' 50,24" + 38^0 22' 52,24" \]
\[= 76^0 34' 42,48" \]

11. Jawabannya adalah sebagai berikut:
\[xo = \frac{(XB' + XC')}{4} \text{ dan } yo = \frac{(YD' + YC')}{4} \]
\[xo = \frac{(211,88 + 211,88)}{4} \]
\[= 105,94 \text{ mm} \]
\[yo = \frac{(211,96 + 211,96)}{4} \]
\[= 105,98 \text{ mm} \]

dengan telah didapatkan besaran xo dan yo maka secara berturutan koordinat titik 1, 2 dan 3 sebagai berikut,
\[xa = xa' - xo \]
\[ya = ya' - yo \]
<table>
<thead>
<tr>
<th>Titik</th>
<th>Koordinat sistem sumbu (x',y')</th>
<th>Koordinat sistem sumbu (x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x') (mm)</td>
<td>(y') (mm)</td>
</tr>
<tr>
<td>1</td>
<td>203,28</td>
<td>81,38</td>
</tr>
<tr>
<td>2</td>
<td>125,91</td>
<td>107,03</td>
</tr>
<tr>
<td>3</td>
<td>57,40</td>
<td>19,82</td>
</tr>
</tbody>
</table>

12. Jawab : (prosedur sesuai langkah-langkah di atas)

a. Jarak \(AB\) = \(\sqrt{((xa - xb)^2 + (ya - yb)^2)}\)

 \[= \sqrt{((-111,94 - 0,00)^2 + (0,00 - 111,94)^2)}\]

 \[= \sqrt{25061,127}\]

 \[= 158,31 \text{ mm}\]

b. \(\cos \theta = \frac{(sa^2 + (AB)^2 - sb^2)}{(2 \cdot sa \cdot sb)}\)

 \[= \frac{(143,91^2 + 158,31^2 - 65,23^2)}{(2 \times 143,91 \times 158,31)}\]

 \[= 0,9111\]

 \[\theta = 24^\circ 20' 31,89''\]

c. Hitung sudut \(\delta\)

 \(\tan \delta = \frac{yb}{xa}\)

 \[= \frac{111,94}{111,94}\]

 \[= 1\]

 \(\delta = 45^\circ\)

d. Sudut \(\alpha = \delta - \theta\)

 \[= 45^\circ - 24^\circ 20' 31,89''\]

 \[= 20^\circ 39' 28,11''\]
e. \[X_e = sa \cos \alpha + xa \]
\[= 143,91 \times \cos 20^\circ 39' 28,11'' + (-111,94) \]
\[= 22,717 \text{ mm} \]
\[Y_e = -(sa \sin \alpha) + ya \]
\[= - (143,91 \times \sin 20^\circ 39' 28,11'') + 0,00 \]
\[= -50,769 \text{ mm} \]

Rangkuman

Secara geometric penting untuk diperhatikan bahwa pada foto senget dengan kemiringan sumbu kamera < 3° melalui proses tertentu masih dapat dikoreksi sehingga mendekati foto udara tegak sempurna.

Berdasar metode penentuan skala tersebut di atas cara yang paling mudah adalah dengan membandingkan panjang fokus kamera dengan tinggiterbang pesawat. Akan tetapi kalau dilihat dari ketelitian yang dihasilkan maka penentuan skala dengan membandingkan jarak dipermukaan bumi dengan dibidang foto mempunyai ketelitian yang paling baik.

Metode trilaterasi dalam penghitungan koordinat mempunyai ketelitian yang lebih baik dalam penentuan posisi karena pengukuran didasarkan langsung dari titik fidusial (referensi).
1. Di bawah ini merupakan informasi tepi foto udara, kecuali;
 a. Nomor foto
 b. Nama pilot
 c. Nama perusahaan
 d. Lokasi pemotretan

2. Horison akan tampak pada foto udara dengan sumbu kamera;
 a. Tegak sempurna
 b. Tegak
 c. High oblique
 d. Normal oblique

3. Pada fotoudara tegak sempurna suatu bidang berbentuk trapesium akan nampak sebagai:
 a. Bujur sangkar
 b. Jajaran genjang
 c. Trapesium
 d. Segitiga

4. Foto udara pankromatik menggunakan panjang gelombang:
 a. 0,4 -0,7 μm
 b. 0,1 -0,4 μm
 c. 0,7 -0,9 μm
 d. 0,2 -0,4 μm
5. Foto udara jamak meliputi ketentuan di bawah ini, kecuali:
 a. Foto udara multispektral
 b. Foto udara saluran ganda
 c. Foto udara yang diambil dari 4 kamera
 d. Foto udara dari kamera tunggal

6. Informasi foto udara yang digunakan dalam proses hitungan koordinat adalah:
 a. Tanda fidusial
 b. Nivo kamera
 c. Jam terbang
 d. Nama perusahaan

7. Berikut ini termasuk data metrik, kecuali:
 a. Penggunaan lahan
 b. Jarak
 c. Sudut
 d. Ketinggian

8. Posisi pada foto udara yang mempunyai kesalahan minimal adalah:
 a. Tanda fidusial
 b. Pojok bidang foto
 c. Titik tengah foto
 d. Bangunan yang tinggi

9. Foto yang direkam dengan panjang gelombang 0,29 – 0,4 μm adalah:
 a. Foto udara infra merah
 b. Foto udara pankromatik
 c. Foto udara elektromagnetik
 d. Foto udara ultra violet
10. Skala pada foto udara mering adalah sesuia keterangan berikut :
 a. seragam
 b. tidak seragam makin jauh makin kecil
 c. makin jauh makin besar
 d. tidak seragam makin dekat makin kecil

11. Skala foto udara dapt dicari dengan membandingkan dibawah ini, kecuali;
 a. Panjang fokus dengan panjang basis udara
 b. Panjang fokus dengan tinggi terbang pesawat
 c. Jarak difoto dengan jarak dilapangan
 d. Jarak di foto dengan jarak di peta

12. Apabila jarak difoto udara 10 mm dan jarak tersebut diukur di lapangan 50 meter, maka skala foto udara tersebut, adalah :
 a. 1 : 500
 b. 1 : 5000
 c. 1 : 1000
 d. 1 : 10000

13. Jarak AB di peta skala 1 : 25.000 adalah 2 cm.jarak tersebut diidentifikasikan dilembar foto udara dan diukur sebesar 5 cm, maka skala foto udara tersebut adalah :
 a. 1 : 1.000
 b. 1 : 10.000
 c. 1 : 5.000
 d. 1 : 12.500

14. Melalui media foto udara dapat diukur
 a. jarak
 b. sudut
 c. koordinat
d. semua benar

15. Koordinat foto udara dapat ditentukan dengan telitimennggunakan alat:
 a. Stereogram
 b. Traking meter
 c. Stereo komparator
 d. Batang paralaks

16. Hitung tinggi terbang pesawat apabila diketahui panjang fokus kamera yang
digunakan 152 mm dan skala foto yang dihasilkan 1 : 5500.
 a. 550 m/ml
 b. 1520 m/ml
 c. 638 m/ml
 d. 836 m/ml

17. Tinggi obyek dipermukaan bumi berturut-turut 250 m, 600 m dan
 350 m diatas permukaan air laut rata-rata. Obyek-obyek tersebut difoto dengan
 kamera yangmempunyai panjang fokus 152 mm dan diambil pada ketinggian
 terbang 1520m/ml. Hitung skala rata-rata di atas tiga titik tersebut!
 a. 1 : 10.000
 b. 1 : 8.355
 c. 1 : 7.368
 d. 1 : 6.052

18. Hitung pergeseran relief apabila tinggi terbang pesawat 1520 m/ml, tinggi
 obyek 400m/ml dan jarak radial ke bayangan obyek 10 cm.
 a. 1,36 m
 b. 2,63 m
 c. 3,63m
 d. 3,36 m
19. Pergeseran relief akan menjadi kecil jika:
 a. Jarak radial ke obyek semakin kecil
 b. Ketinggian titik semakin besar
 c. Tinggi terbang makin rendah
 d. Tinggi terbang semakin tinggi

20. Hitungan koordinat foto udara dengan metode trilaterasi lebih teliti karena beberapa hal dibawah ini, kecuali;
 a. Hitungan didasarkan pada penarikan garis dari titik fidusial.
 b. Terhindar dari kesalahan penarikan garis fidusial
 c. Terhindar dari kesalahan penarikan absis dan ordinat pada garis fidusial.
 d. Semua jawaban a, b dan c salah.

 Cocokan jawaban Saudara dengan kunci jawaban tes formatif yang terdapat di bagian akhir modul ini. Hitunglah jawaban Saudara yang benar, kemudian gunakan rumus di bawah ini untuk mengetahui tingkat penguasaan Saudara terhadap materi modul ini.

 Rumus:
 \[\text{Tingkat penguasaan} = \frac{\text{Jumlah jawaban Saudara yang benar} \times 100}{10} \]

 Arti tingkat penguasaan yang Saudara peroleh adalah:
 - 90 – 100% = Baik sekali
 - 80 – 90% = Baik
 - 70 – 80% = Cukup
 - ≤ 70% = Kurang

 Bila Saudara memperoleh tingkat penguasaan 80% atau lebih, saudara dapat meneruskan dengan kegiatan belajar selanjutnya. Sedangkan jika tingkat penguasaan saudara masih berada di bawah 80%, saudara diwajibkan
mengulangi kegiatan belajar ini, terutama bagian yang belum saudara kuasai secara baik.
Metode pendugaan kedalaman dapat dibedakan atas metode stereoskopik dan monoskopik. Metode pendugaan jarak dengan satu mata disebut monoskopik dan dengan menggunakan dua mata secara bersamaan disebut stereoskopik.

Dibidang fotogrametri pengamatan stereoskopik sangat penting artinya. Melalui pengamatan ini dapat dilakukan berbagai pengukuran dengan media foto udara. Materi dalam modul ini akan memberikan manfaat yang besar bagi mahasiswa dalam pembentukan model tiga dimensi yaitu suatu model yang dapat diukur, dikaji dan dipetakan.

Setelah mempelajari modul ini mahasiswa diharapkan mampu melakukan pengamatan stereoskopis dari pengamatan foto udara yang berpasangan.

Pada modul ini akan dibahas berbagai hal untuk memberikan pemahaman tentang pengamatan stereoskopik. Materi-materi tersebut adalah pengertian stereokopis, pemandangan monoskopik dan stereoskopik serta pembuatan model stereoskopik.

A. Pemandangan Monoskopik

Pemandangan monoskopik adalah tata cara melihat sesuatu obyek hanya dengan satu mata. Cara ini tidak memberikan kesan keruangan terhadap obyek yang dipandang. Jadi obyek yang terlihat seolah-olah diproyeksikan pada suatu bidang datar sehingga tidak dapat diperkirakan jarak antara obyek yang satu dengan yang lain terhadap mata kita. Hanya secara kualitatif dapat dikatakan bahwa benda yang satu lebih jauh dari benda yang lain atau sebaliknya.
Metode pendugaan kedalaman dapat dibedakan atas metode stereoskopik dan monoskopik. Metode pendugaan jarak dengan satu mata disebut monoskopik dan dengan menggunakan dua mata secara bersamaan disebut stereoskopik. Seseorang yang memiliki penglihatan binokuler dapat melakukan penglihatan monokuler dengan menutup satu mata. Jarak ke obyek atau kedalamanan dapat dilihat secara monoskopik berdasarkan:

a. ukuran relative obyek
b. obyek tersembunyi
c. bayangan
d. perbedaan dalam memfokuskan mata (akomodasi mata)

B. Pemandangan Stereoskopik

Sebagaimana disampaikan diatas bahwa pemandangan stereoskopik hanya dapat dilakukan dengan pengamatan menggunakan dua mata secara bersamaan. Cara memandang seperti ini akan memberikan kesan kedalaman atau keruangan. Kemampuan mata untuk dapat membedakan jarak suatu obyek berkisar pada jarak 2 cm sampai deangan 50 meter. Selebihnya dari jarak itu orang tidak dapat melihat kesan keruangan atau tak ubahnya seperti melihat secara monoskopik.

Dengan penglihatan binokuler bila mata difokuskan ke titik tertentu maka sumbu optic dua mata memusat pada titik yang memotong sebuah sudut yang disebut sudut paralaktik. Semakin dekat obyek semakin besar sudut paralaktik dan sebaliknya. Kemampuan mata manusia untuk mendeteksi kedalamanan ternyata hebat sekali yaitu mampu mengenali perubahan sudut paralaktik sekitar 3” busur bahkan beberapa orang mampu membedakan perubahan sekitar 1”. Ini berarti bahwa cara kerja fotogrametri untuk menentukan tinggi obyek dan variasi medan berdasar persepsi kedalaman dengan membandingkan sudut paralaktik dapat mencapai ketelitian yang tinggi.

C. Pengamatan Foto Udara Secara Stereoskopik

Dalam bidang fotogrametri model tiga dimensi dapat diukur, dikaji dan dipetakan. Dengan dasar ini maka melalui media foto udara dapat digunakan
untuk membuat peta baik dalam dua dimensi maupun tiga dimensi. Bayangan stereoskopik dari foto udara hanya dapat dilihat dengan beberapa syarat sebagai berikut ;

a. Tersedia dua buah foto udara yang berpasangan (bertampalan).

b. Kedua foto harus terorientasi satu terhadap yang lain.

c. Satu mata hanya melihat satu foto.

Bagian a dan b dapat dilatih tetapi bagian c teramat sulit untuk dilakukan walaupun sebagian kecil orang dapat melakukannya. Untuk mengatasi hal tersebut digunakan instrument berupa stereoskop.

D. Stereoskop

Stereoskop merupakan alat yang digunakan untuk melihat pasangan foto udara secara stereoskopik atau tiga dimensional. Cara kerja semua stereoskop pada dasarnya sama. Jenis stereoskop terbagi atas ;

a. Stereoskop lensa atau saku. Stereoskop ini berukuran kecil dapat dimasukkan saku dan hanya terdiri dari dua lensa yang berjarak sebesar basis mata.

b. Setereoskop cermin. Terdiri dari dua lensa, dua cermin pengamat dan dua cermin tepid an biasanya dilengkap Api juga dengan paralaks bar/ tongkat paralaks/stereometer. Beberapa keuntungan stereoskop ini adalah bahwa foto udara tidak saling menutup dan dapat diamat seluruh model.

Pengamatan stereoskopik yang tepat dan baik harus memenuhi beberapa syarat yaitu basis mata, garis penghubung pusat lensa dan jalur terbang harus saling sejajar. Sepasang foto yang diorientasikan secara tepat untuk pengamatan stereoskopik dapat dilihat sebagaimana gambar berikut.
Apabila tidak terpenuhi syarat di atas maka akan terjadi paralaks y (py). Paralaks y kecil hanya akan mempengaruhi tegangan mata dan apabila besar maka tidak dapat dibentuk model tiga dimensi.

E. Paralaks

Paralaks terjadi pada semua gambar yang tampak pada foto yang bertampalan/berurutan. Dengan mempelajari paralaks stereoskopik mahasiswa akan dapat mengetahui komponen paralaks mana yang perlu diperhitungkan untuk berbagai pengukuran, bagaimana cara melakukan pengukuran paralaks dan aplikasinya untuk hitungan tinggi.

Setelah mempelajari modul ini diharapkan mahasiswa mampu menjelaskan tentang paralaks stereoskopik

E.1. Pengertian Paralaks

Paralaks adalah kenampakan perubahan posisi suatu obyek terhadap suatu obyek rujukan yang disebabkan oleh perpindahan posisi pengamat. Paralaks terjadi pada semua gambar yang tampak pada tampalan foto yang berturutan. Ada dua hal mendasar yang perlu untuk diketahui yaitu:

a. Paralaks pada titik yang tinggi lebih besar daripada titik yang lebih rendah.

b. Paralaks sembarang titik berbanding lurus terhadap ketinggian titik tersebut.

Perubahan paralaks sesuai dengan ketinggian tempat menyajikan dasar fundamental untuk menentukan ketinggian titik-titik berdasar pengukuran fotografi.

E.2 Pengertian Paralaks pada Pasangan Foto Udara

Apabila dua foto udara belum terorientasi akan terlihat detil pada foto kiri dan kanan belum berhimpit yang berarti bayangan tersebut masih ada paralaks. Karena tiap-tiap detil menunjukkan suatu posisi (dalam sistem koordinat) sehingga paralaks suatu titik adalah perbedaan koordinat foto kiri dan foto kanan dari titik tersebut.

Komponen paralaks terdiri dari:

a. paralaks pada sumbu x disebut px

b. paralaks pada sumbu y disebut py dan

c. paralaks pada sumbu z disebut pz.

d.
Paralaks pada Y:

Untuk titik A; \(P_y = Y_{a1} - Y_{a2} \)
\[= 0 \]
B; \(P_y = Y_{b1} - Y_{b2} \)
\[= 0 \]

Jadi paralaks y untuk semua titik di foto udara adalah nol.

Paralaks y hanya dapat dilihat apabila:

a. skala kedua foto tidak sama
b. salah satu foto udara miring

Dari ketiga paralaks tersebut komponen \(P_y \) untuk semua titik di foto adalah nol apabila foto tersebut merupakan foto vertical dan terorientasi dengan baik.
Komponen Pz :
Paralaks pada arah sumbu z juga berharga nol karena semua titik di foto mempunyai nilai koordinat z yang sama (sama dengan panjang fokus kamera).

Paralaks Px :
Suatu misal titik A dilapangan terekam pada dua foto yang berpasangan maka besaran px dinyatakan sebagai berikut :

\[P_x = x_{a1} - x_{a2} = \left(\frac{f}{Z_A \cdot X_A} \right) - \left(\frac{f}{Z_a \cdot (X_A - B)} \right) = \left(\frac{f}{Z_A} \right) (X_A - X_A + B) = \frac{f \cdot B}{Z_A} \]

dengan f = panjang fokus kamera
B = basis udara
Z_A = tinggi terbang pesawat diatas obyek

Jadi yang berpengaruh pada hitungan hanya paralaks px.

E.3. Pengukuran Beda paralaks
Pengukuran beda paralaks dapat dilakukan dengan beberapa cara sebagai berikut :

a. Pengukuran dengan tangga paralaks
b. Pengukuran monoskopik atas paralaks diikuti dengan subtraksi.
Paralaks titik pada pasangan stereo dapat diukur secara monoskopik maupun stereoskopik. Syaratnya sumbu jalur terbang dan titik utama foto harus ditentukan terlebih dahulu. Pada pengukuran monoskopik ada dua cara yang dapat dilakukan yaitu:

1. Pengukuran koordinat foto kiri dan foto kanan. Pada foto kiri diukur misal \(x_a \) dan pada foto kanan \(x_a' \). Sehingga \(p_a = x_a - x_a' \). Keterbatasan cara ini diperlukan dua pengukuran untuk tiap titiknya.
2. Pengukuran jarak (d) antara gambar foto kiri dan kanan. Cara ini dilakukan dengan mengukur jarak antara titik utama foto misal \(D \) dan jarak antara obyek yang sama misal \(d_b \). Maka untuk titik tersebut \(p_b = x_b - (-x_b') \) harga ini akan sama dengan \(p_b = D \) \(- d_b \). Keuntungannya untuk tiap tambahan titik hanya diperlukan satu pengukuran saja.

c. Beda pembacaan paralaks bar.
Cara ini memerlukan peralatan yang namanya paralaks bar. Keuntungan cara ini pengukuran lebih cepat dan ketelitian yang bisa dicapai sampai dengan fraksi milimeter (0,01 mm).

Hitungan dilakukan dalam formulir terlampir. Sedangkan langkah hitungan dilakukan sebagai berikut:

1. Hitung basis foto (b)
 \[b = \frac{(b_1 + b_2)}{2} \text{ dengan:} \]
 \[b_1 = \text{basis foto kiri} \]
 \[b_2 = \text{basis foto kanan} \]
2. Hitung basis lapangan (B)
 \[B = \frac{b}{s}, \text{ dengan } s \text{ adalah skala foto udara.} \]
3. Hitung konstanta paralaks (C)

 \[C = \frac{C_1 + C_2}{2} \]

 dengan:

 \[C_1 = b_1 - r_{TU1} \]

 \[C_2 = b_2 - r_{TU2} \]

 \(R \) = hasil pembacaan paralaks bar

4. Hitung paralaks tiap titik

 \(P_i = C + r_i \)

5. Hitung beda paralaks (ΔP) terhadap titik refferensi, misal TU1 sebagai referensi dengan tinggi titik 100m/msl. \(\Delta P = P_i - P \) referensi

6. Hitung tinggi terbang (H)

7. Hitung tinggi tiap titik (hi);

 \[h_i = h_{ref} + \left(\frac{(H_{ref} - H) \times \Delta P}{P_i} \right) \]

8. Hitung variasi skala (VS)

 \[VS = \frac{(ST - SR)}{S_{rerata}} \times 100\% \]

 \(ST \) = skala di titik tertinggi

 \(SR \) = skala di titik terendah

 \(S_{rerata} \) = skala foto rata-rata
Contoh formulir dalam pengambilan data:

FORMULIR PENGUKURAN TINGGI DENGAN PARALAKS BAR

Hari/tanggal :
Waktu :
Tempat :
Kelas :
Regu :
Anggota 1 :
2 :
DATA UKURAN
3 :
4 :
Skala Foto Udara :
Fokus Kamera :
Basis Foto Kiri (b1) :
Basis Foto Kanan (b2) :

Pembacaan Paralaks bar (R):

<table>
<thead>
<tr>
<th>No.</th>
<th>Titik</th>
<th>R1 (mm)</th>
<th>R2 (mm)</th>
<th>R rerata (mm)</th>
<th>Keterangan Titik</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TU1</td>
<td></td>
<td></td>
<td></td>
<td>Tampilkan foto kiri</td>
</tr>
<tr>
<td>2</td>
<td>TU2</td>
<td></td>
<td></td>
<td></td>
<td>Tampilkan foto kanan</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contoh formulir hitungan tinggi:

FORMULIR HITUNGAN TINGGI DENGAN PARALAKS BAR

<table>
<thead>
<tr>
<th>Hari/tanggal</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waktu</td>
<td>Regu</td>
</tr>
<tr>
<td>Tempat</td>
<td>Anggota</td>
</tr>
</tbody>
</table>

DATA UKURAN

<table>
<thead>
<tr>
<th>Skala Foto Udara</th>
<th>Basis Foto Kiri (b1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fokus Kamera</td>
<td>Basis Foto Kanan (b2)</td>
</tr>
</tbody>
</table>

HITUNGAN DATA

<table>
<thead>
<tr>
<th>No.</th>
<th>Titik</th>
<th>R (mm)</th>
<th>C (mm)</th>
<th>Pi (mm)</th>
<th>Δ Pi (mm)</th>
<th>Tinggi Titik/Hi (m)</th>
<th>VS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TU1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TU2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bacaan paralaks bar rerata = VS = Variasi Skala Titik

Paralaks pada titik ke i Referensi = TU1 dengan tinggi titik 100 m/dpl

Bedar paralaks tiap titik terhadap titik referensi

Yogyakarta,

INSTRUKTUR

Latihan

1. Jelaskan apa yang dimaksud dengan pandangan monoskopik dan stereoskopii!
2. Jelaskan dan beri contoh bahwa jarak ke obyek atau kedalamanan dapat dilihat secara monoskopik berdasarkan ukuran relative obyek dan obyek tersembunyi!
3. Sebutkan beberapa syarat agar foto udara dapat dilihat secara tiga dimensi!
4. Gambarkan sepasang foto udara yang terorientasi dengan baik!
5. Jelaskan keuntungan menggunakan stereoskop cermin dibanding stereoskop saku!
6. Jelaskan apa yang dimaksud dengan paralaks!
7. Bilamana paralaks dapat terjadi pada fotoudara?
8. Sebutkan komponen-komponen paralaks padapasanganfoto udara dan jelaskan masing-masing dengan pengaruhnya!
9. Hitung besaran paralaks suatu titik A, apabila diketahui panjang fokus kamera udara 152 mm, basis foto 6,5cm dan skala foto 1 : 10.000 serta tinggi titik tersebut 250m/msl.
10. Dari soal no 4, apabila titikB mempunyai beda paralaks sebesar 5mm dari titik A,maka hitunglah tinggtitik B dilapangan.

Kunci Jawaban

1. Telah jelas, lihat pada uraian di awal materi.
2. Ukuran relatif obyek dapat dijadikan dasar dalam pendugaan jarak sebagai contoh gawang lapangan sepok bola apabila dilihat dari satu sisi maka gawang yang dekat kita lebih besar ukurannya dari pada yang jauh padahal ukuran gawang sama besar. Sedangkan obyek tersembunyi bahwa apabila kita melihat suatu obyek yang berurutan maka obyek didepan akan mentup obyek dibelakangnya
dengan dasar ini diketahui bahwa obyek yang tertutup letaknya lebih jauh dari obyek yang mentupi.

3. Telah jelas.

4. Lihat gambar di atas.

5. Keuntungan stereoskop cermin adalah satu foto tidak menutupi foto yang lain sehingga seluruh model yang terbentuk dapat diamati secara serentak.

6. Telah jelas lihat uraian di atas.

7. Paralaks bisa terjadi karena adanya perubahan posisi pesawat pada saat melakukan pemotretan dan terjadi apabila suatu obyek terekam pada saat pemotretan awal dan juga terekam pada pemotretan berikutnya secara berurutan.

8. Telah jelas.

9. Dengan memperhatikan formula

\[P_x = x_1 - x_2 \]

\[= (f/ZA \cdot XA)-(f/Za \cdot (XA-B)) \]

\[= (f/ZA) (XA-XA + B) \]

\[= f \cdot B/ZA \]

maka langkah pertama menyamakan satuan ukuran yaitu ;

f = 0, 152 m

b = 0, 065 m

langkah kedua mencari besaran B dan ZA atas dasar skala, panjang fokus dan basis foto

B = b x faktor skala

= 0,065 x 10.000

= 650 m

ZA = H - hA

= (f x faktor skala) – hA

= (0,152 x 10.000) – 250

= 1520 - 250

= 1270 m
Selanjutnya dicari besaran paralaks pada titik A:

\[P_{xa} = \frac{f \cdot B}{Z \cdot A} \]
\[= \frac{(0,152 \times 650)}{1270} \]
\[= 0,078 \, \text{m} \]

Jadi paralaks pada titik A sebesar = 0,078 m.

10. Tinggi titik B dilapangan dapat dihitung dengan langkah-langkah sebagai berikut:

- **Menghitung paralaks titik B**
 \[P_{xb} = P_{xa} + 0,012 \]
 \[= 0,078 + 0,012 \]
 \[= 0,090 \, \text{m} \]

- **Menghitung tinggi terbang diatas titik B**:
 \[Z_{b} = \frac{f \cdot B}{P_{xb}} \]
 \[= \frac{(0,152 \times 60)}{0,090} \]
 \[= 1098 \, \text{m} \]

- **Menghitung tinggi titik B**:
 \[h_{b} = H - Z_{b} \]
 \[= 1520 – 1098 \]
 \[= 422 \, \text{m/MSL} \]

Jadi tinggi titik B dilapangan = 422 m/MSL.

Rangkuman

Pandangan stereoskopik dalam bidang fotogrametri mutlak diperlukan karena melalui pandangan ini akan di dapatkan model tiga dimensi/stereoskopik yang merupakan gambaran model sebagaimana model dipermukaan bumi. Melalui model ini dapat dilakukan berbagai pengukuran koordinat, tinggi dan plotting dari media foto udara yang bersangkutan.
Paralaks stereoskopik terjadi karena adanya perubahan posisi suatu gambar pada suatu foto satu ke foto berikutnya karena perubahan posisi pesawat terbang. Komponen paralaks terdiri atas py, pz dan px. Komponen paralaks tersebut yang berpengaruh pada hitungan hanya paralaks px. Dengan data paralaks dapat dihitung ketinggian suatu titik dilapangan.
Test Formatif

1. Jarak ke obyek dapat dilihat secara monoskopik berdasar:
 a. Obyek tersembunyi
 b. bayangan
 c. ukuran relatif obyek
 d. semua benar

2. Hal-hal di bawah ini terkait dengan pemandangan stereoskopik, kecuali:
 a. cara melihat benda dengan satu mata
 b. cara melihat benda dengan dua mata
 c. memberi kesan keruangan
 d. batasan memandang sampai dengan 50 meter

3. Keuntungan menggunakan stereoskop cermin dalam memandang tiga dimensi adalah:
 a. dapat di bawa kemana-mana
 b. cakupan kecil
 c. dapat dilakukan beberapa pengukuran di atasnya
 d. dapat dimasukkan saku

4. Berikut ini syarat untuk melihat agar dapat dibentuk bayangan tiga dimensi yaitu:
 a. Tersedia dua buah foto udara
 b. Kedua foto saling terorientasi
 c. Mata hanya melihat satu foto
 d. semua benar
5. Berikut ini pengertian basis mata yaitu :
 a. Jarak antara pupil mata kanan dengan mata kiri
 b. Jarak antara satu pemotretan dengan pemotretan berikutnya
 c. Jarak antara dua titik fidusial
 d. Jarak antara dua satsiun pemotretan dilapangan

6. Tata cara melihat suatu obyek hanya dengan satu mata disebut :
 a. monoskopik
 b. stereoskopik
 c. stetoskopik
 d. mikroskopik

7. Hal-hal di bawah ini terkait dengan pandangan monoskopik, kecuali :
 a. Tidak memberi kesan keruangan.
 b. Obyek seolah-olah diproyeksikan pada bidang datar.
 c. Tidak dapat diperkirakan jarak antara dua obyek.
 d. Secara kualitatif tidak dapat membedakan jauh dekatnya obyek.

8. Pernyataan berikut yang salah adalah :
 a. Semakin dekat obyek, sudut paralaktis semakin besar.
 b. Semakin jauh obyek, sudut paralaktis semakin kecil.
 c. Semakin jauh obyek, sudut paralaktis semakin besar.
 d. Jarak obyek berbanding terlakidengan besar sudut paralaktis.

9. Pada gambar 17, yang dimaksud garis arah terbang adalah :
 a. TU1-Tu2’-TU1’-TU2
 b. a1-a2
 c. TU1-TU2
 d. semua benar
10. Pada gambar 17, yang dimaksud basis foto adalah:
 a. a1-a2
 b. TU1-TU2’
 c. TU1-TU1’
 d. TU2’-TU2

11. Paralaks adalah kenampakan perubahan posisi suatu obyek terhadap obyek rujukan yang disebabkan oleh:
 a. Perpindahan posisi pengamat
 b. Perpindahan benda di lapangan
 c. Perpindahan matahari
 d. Perbedaan tinggi rendah obyek

12. Paralaks Z (PZ) mempunyai harga:
 a. 1
 b. 0
 c. 0,1
 d. 2

13. Paralaks pada arah sumbu X (PX) dipengaruhi oleh:
 a. panjang fokus kamera
 b. panjang basis udara
 c. tinggi terbang di atas obyek
 d. semua jawaban di atas benar

14. Pengukuran beda paralaks dengan tangga paralaks. Berikut ini berkaitan dengan tangga paralaks kecuali:
 a. Selembar film tembus pandang
 b. Tergambar dua garis konvergen
 c. Panjang garis bagian bawah 6,35 cm
 d. Digunakan bersama dengan stereoskop cermin.
15. Keuntungan menggunakan paralaks bar dalam pengukuran beda paralaks adalah:
 a. Ketelitian kasar
 b. Sulit mengoperasikan
 c. Bacaan sampai 1/100 mm
 d. Lebih lama

16. Uraian tentang paralaks berikut ini benar, kecuali;
 a. Paralaks berbanding lurus dengan ketinggian titik.
 b. Paralaks adalah kenampakan perubahan posisi suatu obyek terhadap obyek rujukan.
 c. Paralaks pada titik yang tinggi, lebih besar dari pada titik rendah.
 d. Paralaks berbanding lurus dengan tinggi terbang.

17. Paralaks "y" dapat terjadi sebagaimana hal-hal dibawah ini yaitu:
 a. Skala kedua foto tidak sama.
 b. Salah satu fotonya miring.
 c. Kedua foto tidak terorientasi dengan baik
 d. Jawaban a,b,c benar.

18. Hitung besar paralaks bila diketahui panjang fokus kamera 152 mm, basis udara 650 m dan ketinggian pesawat di atas titik tersebut 1520 m.
 a. 0,065 m
 b. 0,152 m
 c. 0,015 m
 d. 0,021 m
19. Hitung tinggi suatu titik dilapangan bila diketahui panjang fokus kamera 152mm, basis udara 860m, skala foto 1 : 10.000 dan Px = 0,128m.
 a. 860m
 b. 499m
 c. 660m
 d. 128m

20. Apabila diketahui skala pada titik tertinggi 1: 9.650 dan skala pada titik terendah 1: 10.350, maka variasi skalanya adalah:
 a. 14%
 b. 7%
 c. 10%
 d. 5%
Cocokan jawaban Saudara dengan kunci jawaban tes formatif yang terdapat di bagian akhir modul ini. Hitunglah jawaban Saudara yang benar, kemudian gunakan rumus di bawah ini untuk mengetahui tingkat penguasaan Saudara terhadap materi modul ini.

Rumus :
Tingkat penguasaan = \(\frac{\text{Jumlah jawaban Saudara yang benar}}{10} \times 100\% \)

Arti tingkat penguasaan yang Saudara peroleh adalah :

- 90 – 100% = Baik sekali
- 80 – 90% = Baik
- 70 – 80% = Cukup
- ≤ 70% = Kurang

Bila Saudara memperoleh tingkat penguasaan 80% atau lebih, saudara dapat meneruskan dengan kegiatan belajar selanjutnya. Sedangkan jika tingkat penguasaan saudara masih berada di bawah 80%, saudara diwajibkan mengulangi kegiatan belajar ini, terutama bagian yang belum saudara kuasai secara baik.
PENGOLAHAN FOTO TUNGGAL DAN STEREO

Pengolahan foto udara dilakukan melalui pengolahan foto tunggal dan foto stereo. Pada pengolahan foto tunggal hanya diperlukan satu buah foto udara sedangkan pada pengolahan foto stereo diperlukan foto yang berpasangan. Melalui materi ini mahasiswa akan mengetahui bagaimana prosedur pengolahan foto tunggal dan foto stereo.

Setelah mempelajari modul ini diharapkan Mahasiswa mampu menjelaskan pengolahan foto tunggal dan stereo.

Pada modul ini akan dibahas Pengertian rektifikasi / restitusi model, metode orientasi dalam dan luar serta pengadaan Ground Control Point dalam pemetaan fotogrametri.

A. Pengolahan Foto Tunggal

Didalam pengolahan foto tunggal dikenal proses yang namanya rektifikasi yaitu proses untuk menyeragamkan skala foto. Pada dasarnya skala foto dalam sebuah foto udara tidak seragam karena dipengaruhi beberapa hal diantaranya ketinggian pesawat terbang yang tidak persis sama terhadap terain, kondisi permukaan terain yang tidak semua datar dan posisi kamera udara yang tidak benar-benar vertikal.

Proses rektifikasi ini dilakukan per foto demi foto yang pertama mengkoreksi kesalahan tilt dari sumbu kamera dan slop dari terain sehingga nantinya foto menjadi foto yang vertikal sempurna berikutnya melalui proses ini pula semua foto akan mempunyai skala yang seragam.

Seacara garis besar pekerjaan rektifikasi dapat dilakukan dengan cara:

1. Grafis, cara ini dilakukan dengan gambar dan hasilnya kurang teliti karena memang rktifikasi ini sederhana dan murah biayanya.
2. Analog, cara ini menggunakan alat yang namanya rektifier, hasilnya lebih teliti dan ekonomis.
3. Analitis, cara ini dilakukan dengan menggunakan hitungandiperlukan perangkat komputer dan mahal tetapi hasilnya teliti.

B. Pengolahan Foto Stereo

Pada pengolahan atau restitusi foto stereo diperlukan dua buah foto yang berpasangan dan besarnya pertampalan biasanya 60% atau lebih. Berikut disampaikan mengenai orientasi pada pekerjaan fotogrametri.

B.1. Metode orientasi-model digital

Melihat perkembangan fotogrametri, khususnya dalam piranti lunak pemrosesan data foto-udara, dasar orientasi model-stereo dengan alat analog (bab II.4.2 terdahulu) masih dapat diterapkan dengan segala kemudahan. Dengan dasar geomerti pemahaman model-stereo, sebanarnya aplikasi piranti pengaturan model stereo cukup melalui panduan yang ditampilkan pada setiap langkahnya. Justru saat ini operator fotogrametri tidak dituntut kemahiran dan ketrampilan fisik semata (kemampuan adaptasi dengan dasar steroskopi mata serta presisi kerja pada plotter), namun cukup dituntut kemampuan dalam apresiasi computer (mahir memakai PC).

Sebelum dikembangkan pola peralatan plotter analitik dan digital (masih pada standar analog), maka untuk pengolahan data dalam pemetaan fotogrametri, selain syarat stereoskopi mata yang sempurna, pelatihan dan jam terbang operator diutamakan; lewat pelatihan atau pendidikan khusus sebagai operator fotogrametri. Untuk mempersiapkan kerja orientasi model (orientasi dalam –orientasi relative–dan orientasi absolute) perlu disiapkan data awal berupa :

b. Stereogram yang akan diproses (pasangan2 foto udara bertampalan)
c. Data kalibrasi kamera (data dari sertifikat kamera)
d. Data koordinat GCP dan titik minor per model yang dibutuhkan
e. Kelayakan alat plotter yang masih baik operasi
Dalam kasus (contoh orientasi) akan dipaparkan pemakaian salah satu bentuk Plotter Analitik, jenis PA-2000 Sokhisha.

B.2. Orientasi dalam (inner orientation)

Plotter jenis analitik sangat memudahkan dalam operasinya, karena selain dapat dipasangkan diapositif (lazimnya plotter analog) dapat pula dipakai positif dan negatif. Pada tipe lain dapat memakai plotter digital atau DVP (Digital Video Plotter) selalu menggunakan input data foto dalam format digital. Pengaturan pada alat PA-2000 (dalam contoh ini) sekedar memberikan ilustrasi bagaimana kemudahan cara orientasi bila dibandingkan dengan plotter tipe analog.

Cara penempatan sepasang foto (stereogram) tetap dengan metode standar pada plotter analog, yalah **penempatan letak 4 fiducial marks** pada tempatnya. Penempatan tanda silang pada posisi ke-empat titik fidusial tersebut lewat panduan software, sehingga **ketepatan mata terarahkan**. Pada salah satu posisi titik A (tanda fidusial) dapat diarahkan dengan cara pembacaan titik apung (floating mark) secara kasar, kemudian dengan “zoom” atau perbesaran arah letak bacaan dapat ditepatkan (dengan salah satu mata); selanjutnya dengan bantuan pengimpitan mata yang lain akan mampu berimpit di titik baca A.

Setiap langkah ada perintah menu pada layer monitor (PC) sehingga bila keempat tanda telah diusahakan bacaan yang benar, akan ada tampilan Kesalahan (residu error). Apakah masih harus diteruskan/ diulang, dapat Diketahui berapa micron (misalnya toleransi = 5 mikron), OK

Pada langkah berikutnya, sebelum diketahui kesalahan penempatan, maka program orientasi dapat dipilih : **OK / Cancel?** Pilih salah satu

Sebagai contoh, dapat dilihat pada table di bawah, adanya data kualitas orientasi dalam per tahapan pada 4 titik masing-masing (titik A, B, C, dan D).
Tabel 3. Koordinat titik untuk orientasi

<table>
<thead>
<tr>
<th>T.Fiducial</th>
<th>d-X kiri mm</th>
<th>d-Y kiri mm</th>
<th>d-X kanan</th>
<th>d-Y kanan</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>- 0, 012</td>
<td>- 0,006</td>
<td>- 0, 011</td>
<td>- 0,009</td>
</tr>
<tr>
<td>B</td>
<td>0, 003</td>
<td>0, 013</td>
<td>0, 005</td>
<td>0, 014</td>
</tr>
<tr>
<td>C</td>
<td>- 0, 004</td>
<td>- 0, 007</td>
<td>- 0, 013</td>
<td>- 0, 008</td>
</tr>
<tr>
<td>D</td>
<td>0, 006</td>
<td>0, 009</td>
<td>0, 010</td>
<td>0, 003</td>
</tr>
</tbody>
</table>

B.3. Orientasi relatif

Proses penempatan perpotongan berkas sinar dengan dasar teori menghilangkan / meniadakan paralaks pada ke-6 titik von Gruber tersebut. Untuk meniadakan paralaks dengan menu program pula, operator akan dipermudah lewat perangkat bantu:

a. Mula-mula dihilangkan secara kasar dengan track ball agar \(py = 0 \)

b. Kemudian px (paralaks arah-x) dihilangkan dengan “footdisk”

Bila 6 titik yang mewakili seluruh model tersebut (titik von Gruber) telah dihilangkan paralaks masing-masing, perlu di cek hasil akhirnya lewat residu error yang ditetapkan (misalnya sampai kesalahan 4 mikron saja). Kalau masih terlalu besar kesalahan akhir, proses di atas perlu diulang lagi.
Pada dasarnya pembuatan model tiga dimensi atau mewujudkan model stereo, belum bisa dimulai pengukuran/ penggambaran (ploting detail) karena skala model belum terkoreksi. Selain model belum memiliki skala yang benar, juga belum dikembalikan kepada datum yang benar. Perlu dua tindakan lanjut seperti pada cara analog (scaling and leveling).

Pada persiapan tahap orientasi absolute, diperlukan data koordinat ikatan atau koordinat GCP, lazim pilihlah 4 titik ikatan. Pada contoh ada 4 titik dengan harga koordinat masing-masing seperti table di bawah ini:

<table>
<thead>
<tr>
<th>TITIK IKAT</th>
<th>X (m)</th>
<th>Y (m)</th>
<th>Z (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>431.364, 376</td>
<td>9.141.585, 588</td>
<td>141, 135</td>
</tr>
<tr>
<td>2</td>
<td>431.411, 409</td>
<td>9.141.253, 459</td>
<td>136, 852</td>
</tr>
<tr>
<td>3</td>
<td>431.300, 121</td>
<td>9.140.898, 679</td>
<td>132, 986</td>
</tr>
<tr>
<td>4</td>
<td>432.699, 185</td>
<td>9.141.174, 306</td>
<td>136, 004</td>
</tr>
</tbody>
</table>

B.4. Orientasi absolute

Proses pembentukan model-stereo dilaksanakan dengan bantuan 4 titik ikat atau minor control points yang diketahui koordinatnya (lihat table di atas). Sebelum mulai tahap orientasi absolute, dilakukan entry data koordinat terlebih dahulu sesuai proses orientasi relative, dengan panduan menu software yang ada dalam proses orientasi. Operator tinggal penempatan kursor pada layer monitor sesuai perintah menu yang ada, satu persatu; dalam hal ini floating mark atau tanda baca digerakkan lewat kursoranya. Karena entry data 4 titik ikat telah dilakukan, maka posisi penempatan secara kasar telah mendekati. Tinggal penghalusan penempatan secara hati-hati dengan floating mark di impitkan pada

Setiap langkah orientasi selalu dapat dikontrol kualitas dan ketelitiannya, maka bila telah dipenuhi toleransinya, dapat dikatakan cukup. Bila masih akan diperbaiki bisa diulang tiap langkahnya. Tabel di bawah merupakan residual error pada akhir tahap orientasi absolute tersebut.

<table>
<thead>
<tr>
<th>TITIK IKAT</th>
<th>D-x (mm)</th>
<th>D-y (mm)</th>
<th>D-z (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0, 084</td>
<td>0, 052</td>
<td>0, 100</td>
</tr>
<tr>
<td>2</td>
<td>0, 053</td>
<td>0, 012</td>
<td>0, 136</td>
</tr>
<tr>
<td>3</td>
<td>0, 058</td>
<td>0, 091</td>
<td>0, 077</td>
</tr>
<tr>
<td>4</td>
<td>0, 083</td>
<td>0, 056</td>
<td>0, 032</td>
</tr>
</tbody>
</table>

Dengan demikian, model telah selesai, telah siap untuk penggambaran/ploting, baik penggambaran planimetris maupun penggambaran detil ketinggian; karena skala telah terkoreksi atas dasar 4 titik ikata tersebut; demikian pula model telah terletak pada bidang referensi/datum yang benar. Elevasi pada model akan sama dengan pembacaan langsung di lapangan.

B.5. Pengadaan GCP (Ground Control Point).

Dalam pemetaan fotogrametri mutlak pemakaian titik ikatan, GCP atau TDT (titik dasar teknik), sehingga tidak bisa melupakan tugas survey dan
pengukuran di lapangan; pemasangan tugu-tugu, pengukuran koordinat GCP/TDT, serta penandaan sebelum pemotretan. Metode penandaan titik ikat sebelum pemotretan udara dikenal sebagai metode “Pre Marking”. Namun bila setelah pemotretan ada beberapa titik/tanda tidak mucul (tidak nampak dalam hasil foto) atau karena sesuatu sebab hilang/ rusak, bisa digantikan. Keberadaan GCP atau penambahan titik ikat baru (TDT atau BM baru) dapat pula dilakukan dengan pola identifikasi dan penandaan di foto setelah pemotretan. Cara kedua banyak dilakukan dalam hal tertentu, agar efisiensi waktu pelaksanaan proses pengolahan data peta tercapai; cara ini dinenal sebagai metode “Post Marking”.

Beberapa rumusan penting dalam masalah GCP dan Pre-Marking:

a. Ketentuan jarak ikatan GCP ditentukan pula dengan skala foto serta kondisi di lapangan; namun jarak antar GCP dapat berkisar 3 sampai 4 kali basis udara atau jarak D = 3xB (meter). Proses perluasan ikatan, dilakukan dengan pola hitungan TU (Triangulasi Udara), yang dilakukan tersendiri.

b. Semua ikatan perlu diberikan tanda, atau “pre-marks” dengan dasar ukuran sayap lebar =d dan panjang = 5d. Ukuran d = 30 mikron X angka skala foto. Pemasangan ditempat terbuka jelas kenampakan dari udara; bahan sayap bisa bermacam (bamboo, papan, lempengan plastic); atau bila di tempat datar/jalan raya, boleh dengan warna cat yang kontras. Sayap tersebut (misalnya ukuran 30 Cm X 150 Cm untuk pemotretan pada skala 1 : 10.000) harus terpasang kuat (dengan penyangga bila di persawahan/ ladang) dan dijaga jangan sampai rusak/hilang sebelum pemotretan selesai. Perlu dibuatkan letak, diskripsi lokasinya.

c. Tugu ikatan baru (yang belum ada data koordinatna) perlu diukur atau dilakukan survey lapangan, misalnya pengamatan secara GPS survey. Semua titik ikat (BM baru) dan seluruh GCP/ TDT yang akan dipakai dalam proses pemetaan fotogrametri, harus dibuatkan dokumentasi dan diskripsi letaknya (dibuat Buku Titik Ikatan, GCP).
d. Penggunaan ikatan (baik GCP dan titik hasil hitungan TU) sangat menentukan kualitas skala model-stereo dan kedudukannya pada hasil pemetaan; terutama dalam tahap **orientasi absolute**.

Latihan

1. Apakah yang dimaksud dengan rektifikasi?
2. Bagaimanakah sifat foto yang sudah direktifikasi?
3. Apakah yang dimaksud dengan orientasi absolut?
4. Apakah yang dimaksud dengan orientasi relatif?
5. Bagaimanakah ketentuan pemasangan GCP dan premarking?

Kunci Jawaban

1. Telah jelas sesuai uraian diawal materi.
2. Sifat foto udara yang telah direktifikasi adalah sebagai berikut ;
 a. foto udara menjadi foto yang tegak sempurna.
 b. Skalafoto seragam.
 c. Pergeseran relief masih ada.
 d. Proyeksi masih proyeksi sentral.
3. Telah jelas.
4. Telah jelas.
5. Telah jelas.
Pengolahan foto tunggal penting dilakukan karena untuk mendapatkan fotoudara yang benar-benar vertikal tidak mudah didapatkan. Proses ini mendasari agar fotoudara dapat dimanfaatkan untuk proses dan aplikasi lebih lanjut.

Pada pengolahan foto stereo lebih kompleks untuk dilakukan disini perlu dilakukan orientasi dalam dan selanjutnya orientasi luar. Melalui proses ini akandidapatkan model yang mempunyai skala dan ketinggian yang benar karena orientasi didasarkan pada titik kontrol di permukaan bumi.

Test Formatif

1. Proses untuk menyamakan skala foto udara disebut:
 a. rektifikasi
 b. pre marking
 c. modifikasi
 d. substitusi

2. Di bawah ini data awal untuk orientasi model yaitu:
 a. data kalibrasi kamera
 b. data GCP
 c. pasangan foto udara
 d. semua jawaban di atas benar

3. Orientasi dalam adalah membuat berkas sinar pada proyektor sama dengan:
 a. pada saat matahari terbit
 b. pada saat matahari terbenam
 c. berkas sinar pada jam12.00WIB
d. Berkas sinar pada saat pemotretan

4. Dalam pekerjaan orientasi absolute diperlukan GCP atau TDT yang berguna untuk:
 a. Agar posisi pesawat tetap
 b. Menentukan koordinat lapangan dari foto udara
 c. Variasi kelengkapan data
 d. Izin penerbangan

5. Metode pengadaan titik ikat sebelum pemotretan disebut:
 a. Bench marking
 b. Pre marking
 c. trakking
 d. mapping

6. Secara garis besar pekerjaan rektifikasi dapat dilakukan dengan cara:
 a. grafis
 b. analog
 c. analitis
 d. semua jawaban di atas benar.

7. Pembetulan berkas sinar pada model terhadap pasangan foto kiri dan kanan adalah tujuan dari pekerjaan orientasi:
 a. relatif
 b. absolut
 c. luar
 d. semua jawaban benar

8. Pada orientasi absolut setiap penempatan posisi titik ikat akan sama artinya dengan hal-hal berikut ini, kecuali:
 a. Pembetulan posisi obyek
b. Pembetulan skala model
c. Pembetulan elevasi obyek
d. Pembetulan penamaan obyek

9. Di bawah ini terkait dengan pembuatan premark, kecuali:
a. Ukuran disesuaikan dengan skala foto yang akan dibuat.
b. Pemasangan ditempat terbuka.
c. Bahan dicat dengan warna yang kontras.
d. Dipasang tidak perlu kuat karena hanya bersifat sementara.

10. Pada orientasi dalam penempatan sepasang foto udara didasarkan pada :
a. Posisi tanda fidusial
b. GCP
c. TDT
d. Titik utama foto

Cocokan jawaban Saudara dengan kunci jawaban tes formatif yang terdapat di bagian akhir modul ini. Hitunglah jawaban Saudara yang benar, kemudian gunakan rumus di bawah ini untuk mengetahui tingkat penguasaan Saudara terhadap materi modul ini.

Rumus :
Tingkat penguasaan = \(\frac{\text{Jumlah jawaban Saudara yang benar}}{10} \times 100\% \)

Arti tingkat penguasaan yang Saudara peroleh adalah :
\[90 – 100\% = \text{Baik sekali} \]
\[80 – 90\% = \text{Baik} \]
\[70 – 80\% = \text{Cukup} \]
\[\leq 70\% = \text{Kurang} \]
Bila Saudara memperoleh tingkat penguasaan 80% atau lebih, saudara dapat meneruskan dengan kegiatan belajar selanjutnya. Sedangkan jika tingkat penguasaan saudara masih berada di bawah 80%, saudara diwajibkan mengulangi kegiatan belajar ini, terutama bagian yang belum saudara kuasai secara baik.
MODUL V

PEMETAAN
FOTOGRAMETRI

Materi dalam modul ini akan memberikan gambaran yang luas tentang prosedur dasar yang harus dilakukan dalam kegiatan pemetaan secara fotogrametris. Melalui materi ini mahasiswa akan dapat mengetahui bagaimana prosedur proses pemetaan fotogrametri secara komprehensif.

Setelah mempelajari modul ini diharapkan Mahasiswa mampu menjelaskan prosedur dasar dalam pemetaan fotogrametri

Pada modul ini akan dibahas hal-hal yang berkaitan dengan pemetaan secara fotogrametris. Kegiatan tersebut terangkum dalam materi persiapan pemetaan fotri, tata cara pemotretan udara, konsep peralatan pemetaan digital, perkembangan piranti pemetaan fotri dan plotting dan kartografi.

A. Tatacara Pemotretan Udara

Dalam fotogrametri (Fotogrametri) dikenal tiga langkah utama: data akuisisi atau tahap pengadaan data awal (baik berupa hasil pemotretan udara, penyiapan data citra lain untuk pemetaan), tahap prosesing atau pemetaan dan terakhir penyajian dan penyimpanan data hasil (baik hard copy dan soft copy). Pengadaan data awal sangat menentukan kualitas dan ragam hasil nantinya, maka persoalan utama adalah perencanaan yang seksama serta melalui dasar kecermatan pemikiran yang terpadu. Sementara ragam pilihan cara dan pola pengadaan data awal (data akuisisi dalam fotogrametri) sangat terpancang kepada masalah keamanan (security). Pemotretan udara pada sadarnya harus melalui proses perijinan setelah perencanaan jalur terbang dibuat. Instansi pemberi ijin adalah pihak Pusat Survei dan pemetaan (Pussurta) TNI-AU di bawah Departemen Pertahanan. Selalu dibutuhkan adalah S.C atau “Security Clearance” yang dalam pelaksanaannya berdasar SNI Pemotretan Udara Standar; sementara untuk pengadaan data non fotografi (pengadaan citra satelit) dan pembelian data lain
tanpa SC. Pemotretan udara dengan mempergunakan wahana pesawat berawak (PB) mutlak dibawah koordinasi yang berwenang, hal ini mengingat selama ini wilayah kesatuan NKRI ada dalam wawasan dan pengawasan matra udara oleh TNI-AU (termasuk pemakaian fasilitas landasan atau pangkalan pesawat terbang selama proses pemotretan).

Dalam SNI (Standar Nasional Indonesia) yang mengatur tatacara pemotretan udara dapat disampaikan ringkasannya sebagai urutan dalam bab per bab yang didapatkan dalam SNI tersebut. Pedoman pengadaan data foto dari murni pemotretan udara yang menggunakan fasilitas PB dan ijin operasional selama kurun waktu berlakunya S.C dibawah supervise seorang S.O atau Security Officer yang telah ditunjuk saat diterbitkannya masa berlaku S.C tersebut. Untuk catatan (dari hasil pengalaman) sebaiknya permohonan ijin lama waktu operasional dipertimbangkan dengan beberapa kendala non teknis di lapangan, misalnya dalam kalkulasi berdasar peta FP (Flight Plan) atau peta rencana jalur terbang akan memakan total waktu 8 hari kerja, sebaiknya dibuat lebih (pengalaman bisa dua kali waktu), hal ini terkait erat dengan kondisi:

a. Faktor cuaca selama kurun waktu pemotretan (prediksi cuaca yang kadang dapat meleset, serta perlu ada kelonggaran waktu)
b. Masalah non teknis terkait kondisi ijin operasional harian, sebab tidak selama cuaca baik dapat langsung terbang/ memotret; ada kalanya harus mengalami “delay” atau bahkan “cancellation” atau pembatalan untuk take off pada hari-H. Tergantung keperluan sesaat, misalnya ada penutupan landasan karena akan ada tamu Negara (orang VVIP, dll)
c. Masalah pengulangan karena ada beberapa foto yang “rejected” atau harus diulang setelah selesai satu penerbangan, karena hasil yang tidak memenuhi standar kualitas. Perlu pemeriksaan on line (sesaat setelah dicuci dan cetak navigasi), apakah ada kesalahan data atau tidak.
d. Masalah pengadaan logistikm bahan bakar di tempat landasan dan lain sebab yang bisa menyebabkan penguluran waktu (“technical delay”)
Pada bagian berikut ini, akan disajikan urutan prosedur berdasar SNI Pemotretan udara berdasarkan langkah-langkah:

1. Ketentuan Umum
 b. Skala foto atau skala negatif yang akan diperoleh dalam pemotretannya harus dicantumkan; hal ini terkait nantinya dengan kemampuan wahana atau PB (pesawat berawak) yang akan terbang pada hitungan berdasarkan skala foto dan jenis kamera yang akan dipakai (berapa harga fokus kamera).
 c. Peralatan dasar/ media perekam yang akan dipergunakan, serta jenisnya apakah kamera analog, format negatif, serta apakah akan memakai media perekam lain yang diperbolehkan. Bila memakai kamera analog standar harus diperiksa (cek ulang) apakah masih layak dipakai, tergantung data kalibrasi kamera. **Periksa Sertifikat Kamera**, apakah masih berlaku (masih dalam masa berlaku), termasuk PB yang akan dipergunakan, apakah masih layak terbang.
 d. Jenis film yang akan digunakan, apakah hita putih (black & white, panchromatic, atau color photo) yang ada dipasaran / berlaku umum.
 e. Format foto udara yang memenuhi kualitas geometrinya, rona yang layak untuk keperluan pemetaan secara fotogrametris; serta bila akan dipakai hasil lanjut masih sesuai (selain peta, bisa berupa mosaic, data interpretasi). Dikenal macam dan ukuran format analog (standar kamera normal metrik 23 Cm X 23 Cm) serta dapat pula memakai kamera medium metrik (dan juga non metrik) ukuran 6 Cm X 6 Cm. Dengan
teknologi pemetaan (melibatkan software mapping yang canggih) dapat dipakai pemotretan dengan kamera format kecil, SFAP atau small format aerial photography.

f. Security Clearance (S.C) menyatakan ijin pemotretan yang harus dipatuhi dalam hal: batas waktu operasional pemotretan udara, dan syarat2 teknis untuk jenis wahana (P.B.) serta kelayakan terbangnya.

g. Tahap awal terkait pula dengan masalah: "Pre marking" atau tahap signyalisasi (penandaan di lapangan) bersamaan waktu pemasangan tugu ikatan atau GCP (ground control point). GCP dapat memanfaatkan titik dasar yang ada, misalnya TDT (Titik Dasar Teknik) orde 2 atau orde-3 yang telah ada. Pre marks harus dipasang sebelum pemotretan.

h. Hasil akhir pada tahap pertama ini, berupa negatif film dan tatacara penyimpanan sesuai peraturan yang ada (sesuai SNI) serta index foto berdasar hasil pemotretan. Selain foto, juga diserahkan data diskripsi letak semua titik ikat (GCP atau TDT) yang telah dilakukan pengukuran dan pemasangan tanda sebelum pemotretan. Bila ada pre mark (s) yang hilang atau rusak, setelah pemotretan dapat dilakukan identifikasi atau penggantian tanda pada foto hasil, yang dikenal dengan proses "post marking" maka titik ikatan akan melengkapi data awal.

2 Kamera dan Peralatan Pendukung.

Ragam perangkat dalam pemotretan udara serta sasaran hasil untuk tujuan pemetaan dapat dikemukakan sebagai persyaratan yang ditetapkan pula dalam SNI, baik menyangkut masalah kamera, data kalibrasi, serta pola penerbangan yang dapat dikemukakan apakah akan memakai alat Bantu navigasi GPS.

a. Bila memakai PB maka dudukan kamera di badan pesawat harus ada ijin dan sesuai standar keselamatan terbang (letak camera mounting) dan kondisi pesawat sebelum operasi lapangan; hal ini menyangkut apakah ada efek yang akan mempengaruhi "tilt" dan "drift" pesawat selama di udara
b. Kamera harus dilengkapi filter tertentu sesuai sifatnya dan kondisi lokasi pemotretan (areal proyek); khususnya memperhatikan tinggi terbang, pengatur diaphragma otomatik, serta tujuan hasil pemotretan yang baku.

c. Apakah memenuhi syarat perlengkapan mekanik yang mendukung kamera yang akan dipergunakan, dan masih bekerja normal.

d. Harus dapat menunjukkan sertifikat kamera serta masa berlakunya bila memakai jenis kamera metrik. Sementara untuk pemakaian SFAP atau penggunaan jenis kamera komersial belum ada keharusan data kalibrasi.

e. Untuk pemotretan udara dengan memakai sarana GPS-navigasi atau secara GPS-kinematik harus direncang khusus sehingga ada interface dengan peralatan GPS agar posisi titik pusat tiap foto (kedudukan pusat foto) dapat ditentukan (diketahui koordinatnya, berdasar bacaan GPS).

3 Media Perekam.

a. Film yang dipergunakan dalam pemotretan udara harus jenis film yang mudah diperoleh di pasaran.

b. Penyinaran (exposure) dengan pemilihan celah diaphragma dan kecepatan rana atau shutter sedemikian rupa sehingga diperoleh bayangan yang tajam. Pergerakan bayangan (image motion) yang diperoleh pada skala 1 : 5000 atau lebih kecil, tidak melebihi 25 mikronmeter. Untuk pemotretan pada skala foto yang lebih besar dari 1 : 5000 harus kurang dari 50 mikronmeter.

c. Kualitas kontras pada negatif maupun positif harus memenuhi persyaratan reproduksi foto.

d. Dalam proses pengembangan (development) harus dilakukan hati-hati untuk menghindari penyesutan & pengembangan dan perolehan tone serta brightness range yang relative sama dengan brightness range permukaan tanah / topografi.

e. Proses penetapan (fixation) harus dilakukan secara sempurna agar tidak ada unexposed silver yang tertinggal, film bersih.

f. Hasil yang menunjukkan bebas noda dan goresan (selama proses).
g. Cakupan awan tidak menutupi obyek penting serta kurang dari 5% per lembar foto hasilnya.

h. Perlu dilakukan uji fotogrametris yang ditetapkan khusus dalam proyek.

4. Pembuatan Jalur Terbang (Flight Planning).

Persyaratan teknis pembuatan FP (Flight Planning) dibuat dan ditetapkan berdasarkan sasaran hasil akhir proyek, serta persyaratan skala foto, pertampalan dan cara proses atas dasar analog atau digital. Untuk pembuatan FP dimulai dari teori dasar cara analog, sehingga bila akan memakai bantuan software lain selama pemotretan (terutama cara PGS-navigasi) akan mudah penggunaannya bila telah dipahami dasar-dasarnya.

Dasar dasar perencanaan jalur terbang juga merupakan syarat untuk disertakan sebagai lampiran ijin/permohonan Security Clearance (S.C.) kepada pihak yang berwenang (oleh Pussurta TNI-AU, Dep. Hankam). Beberapa hal antara lain perlu dicermati dasar-dasar FP adalah:

a. Peta jalur terbang, atau FP (flight plan) merupakan pedoman arah jalur pemotretan, saat mulai dan berakhirnya titik bukaan (exposure station) per lintasan jalurnya, meliputi seluruh luasan proyek. FP adalah bagan jalur lengkap dengan letak dan koordinat tiap titik bukaan (exposure) selama proses pemotretan berlangsung. FP diplot (digambarkan) pada peta topografi atau peta lain yang sesuai skalanya (untuk pedoman kerja tim udara/air crew).

b. Keberhasilan pemotretan sangat menentukan kualitas foto-udara dan hasil olahan akhir (peta-peta serta produk lain). Manfaat FP adalah untuk menghitung total biaya dan kebutuhan logistic selama penerbangan (selain untuk lampiran permohonan ijin, atau perolehan S.C).

c. Dengan pola FP yang efeisien (pengaturan arah terbang yang cocok dengan lokasi) dapat dipergunakan sebagai entry data bila akan memakai pola pemotretan GPS-navigasi atau pemotretan udara kinematika.
d. Dengan melihat pola FP akan mudah ditentukan pemakaian (pemilihan) wahana dan kombinasi kamera yang cocok dengan jangkauan luasan proyek dan kondisi logistic bahan bakar setempat.

e. Ada keterkaitan erat antara penetapan skala foto, medan, dan kemampuan tinggi terbang wahana yang dipilih; jumlah foto juga akan tergantung skala foto dan pertampilan yang direncanakan (sesuai kondisi daerah dan keadaan topografi).

f. Khusus melihat kondisi topografi daerah, serta penentuan skala foto maka tinggi terbang sangat tergantung berapa panjang fokus kamera (tipe kamera yang akan dipilih), terutama lebar cakupan dan kemungkinan akan terjadinya VS (Variasi Skala) untuk ketinggian tertentu. Kesalahan VS untuk tiap jalur tidak boleh lebih dari toleransi 10%.

g. Parameter perencanaan dalam pembuatan FP akan dipergunakan lebih lanjut dalam hitungan biaya dan jumlah material selama proses (akan dibahas dalam bab selanjutnya).

Masih terkait dengan FP, secara umum manfaat dan sasarannya adalah:

a. Perlu adanya desisi, apakah perlu atau tidaknya pemotretan?

b. Nilai dan urgensi pemotretan udara atas dasar pertimbangan luas wilayah, potensi wilayah, serta adanya fasilitas pendukung selama eksekusi

c. Sasaran hasil akhir, apakah ada selain kebutuhan foto udara; misalnya pembuatan peta-garis, peta-foto, mosaic, dan lain data base yang perlu)

d. Faktor kecepatan perubahan penggunaan lahan pada daerah yang relative sangat pesat perkembanganannya

e. Perlu dilakukan segera pemotretan udara, karena belum ada data dan belum memiliki informasi topografi (daerah baru dan dikembangkan)

f. Pemotretan diharapkan selalu bisa mendukung pembangunan lintas sektoral dan multi guna (untuk sektor pajak, PBB, PAP-BPN, Dep. PU)

g. Pemotretan udara sebagai syarat mutlak dalam permohonan ijin usaha pengelolaan hutan (ijin prinsip HPH)

h. FP untuk mendukung pemotretan kawasan wisata/ obyek penting lain.
B. Konsep Peralatan Pemetaan Digital

Dalam realisasinya pelaksanaan pemetaan cara digital hampir sama, hanya akan dibedakan dalam pengambilan input data; apakah dari hasil scanning foto analog (kedalam format data digital) atau langsung memakai data citra satelit yang disiapkan untuk pemetaan. Secara garis besar konsep peralatannya akan dapat dkelompokkan dalam 6 (enam) tahapan masing-masing untuk :

a. Peralatan pada perbesaran citra (blow up citra). Dipergunakan software Auto Cad 2000/ Auto Cad Map : PCI (Canada), ataupun ER Mapper versi 6.xx (misalnya paling rendah ER Mapper 6.1)

c. Peralatan dalam pembuatan DEM (Digital Elevation Model) : Perangkat PC (computer) Pentium IV – 1700 GH, 256 MB DDRAM, 40 GB Hard disk. Software PCI Geomatica OrthoEngine (atau ER Mapper 6.1); serta software Transformasi yang mampu mentransformasi dari koordinat UTM ke TM-3 (sistem proyeksi peta di BPN)

d. Peralatan untuk Rektifikasi Citra. Komputer dengan Pentium IV, 1700 GH, 256 MB DDRAM, 40 GB Hard disk. Serta software PCI Geo Engine ataupun memakai ER Mapper 6.1

e. Peralatan untuk Mosaicing dan Cropping. PC Pentium IV, 1700 GH, 256MB DDRAM, 40 GB hard disk. Software PCI atau ER Mapper

f. Peralatan pada entry data dan Kartografi Digital.

Sebagai catatan mengapa pola pelaksanaan dalam PAP-BPN fase-II (dimulai sejak 2004) lebih condong menggunakan input data dari citra satelit dari pada memakai citra foto udara; ada 3 (tiga) alas an pokok, yalah :

1. Kelebihan citra satelit (IKONOS dan QUICK BIRD) pada saat ini sudah memadai kebutuhan dalam pengadaan peta skala besar
2. Harga pengadaan data lebih murah dari cara pemotretan udara

Dalam pelaksanaan masih harus dibuatkan standar operasional tetaap (Protap) bagi para konsultan swasta agar terpenuhi control kualitas hasil. Hal ini sejalan dengan pola pemetaan kadastral yang dapat dilimpahkan ke pihak ketiga (swasta) sesuai aturan yang berlaku. Sementara sasaran pokoknya adalah :

1. Agar ada acuan bagi pelaksana di setiap Kantor Pertanahan.
2. Mengurangi kesalahan hasil pengukuran, baik di kawasan Rural ataupun di kawasan Urban; sehingga mampu menghasilkan produk peta pendaftaran yang “up to date”
3. Memiliki kualitas dan ketelitian tinggi dan dapat dipertanggung jawabkan baik segi teknis maupun juridis.

Untuk penjelasan operasional pemakaian alat fotogrametri digital, akan dapat dibahas dalam bab selanjutnya. Namun kelompok perangkat hard ware & software dalam metode pemetaan fotogrametri digital akan sangat berbeda dengan cara analog (dengan berbagai klasifikasi plotter dan kemampuannya).

C. Perkembangan Piranti Pemetaan Fotogrametri

Salah satu piranti yang sangat mempermudah dalam tahap awal tugas fotogrametri adalah keberadaan GPS (Global Positioning System) pada saat data akuisisi atau pemotretan udara. Rangkaian piranti navigasi GPS digabungkan dengan pemantik (trigger) kamera akan memberikan solusi ketepatan posisi tiap liputan foto (titik pusat foto dapat ditepatkan posisinya saat bukaan atau “exposure”).
Pada contoh, posisi tiap titik awal per jalur dapat ditunjukkan dengan bacaan pada alat GPS, sehingga alat modem secara mekanis mampu memantik atau memberikan perintah bukaan pada kamera (exposure time) secara simultan. Agar posisi tiap titik bukaan atau posisi pusat tiap foto per jalur sesuai FP maka rencana jalur dengan hitungan koordinat tiap pusat foto dimasukkan (entry data) ke program pemotretan. Perbedaan pada cara pembuatan FP secara manual, didalam pemakaian program (piranti perekaman plus software pemotretan) tinggal membaca posisi tampilan (pada layer monitor Laptop) dan komando sinyal alarm dari alat GPS-nav.

Dalam penyiapan data awal, setelah pemotretan berhasil (dengan kualitas yang memenuhi syarat fotografii udara), secara tersendiri semua negative film hasil pemotretan harus ditransfer ke dalam bentuk data digital (perlu proses scanning). Dalam hal ini dipilih alat scanner dengan kemampuan rekam yang dipilih (minimal 2000 dpi). Satuan dpi (dot per inch) adalah kemampuan kerapatan data titik per satuan panjang, atau tiap 1 inch (= 25400 mikron untuk 2000 satuan titik (2000 dpi). Maka ketelitian data pada kasus ini = 12 mikron atau 0,012 mm (1 mm = 1000 mikron). Untuk sektor BPN tuntutan ketelitian di lapangan akan = 12 mikron (untuk data input 2000 dpi) akan = 12 mikron X 10.000 (bila foto udara skala 1 : 10.000). Kualitas data = 12 X 10.000 mikron = 120 mm = 12 Cm akan terpenuhi dalam pemetaan (PMNA.3/ 97).

D. Aturan Pemetaan Kadastral dari data Citra Satelit

Merujuk hasil hasil Workshop (8 sampai 11 Desember 2003) tentang Manajemen Proyek, Pendaftaran Tanah Sistematik dan LMPDP, di Yogyakarta (Kerjasama Jurusan T.Geodesi UGM & BPN), maka salah satu cara pengadaan peta peta pendaftaran tanah guna mendukung PAP-BPN tahap II ditetapkan dapat memakai citra satelit yang saat ini memenuhi kualitas dan ketelitian untuk pemetaan skala besar, yalah IKONOS dan QUICK BIRD. Namun ada persyaratan yang ketat harus dipenuhi dalam tahap pengadaan data:
Table 6. Perbandingan citra ikonos dan quickbird

<table>
<thead>
<tr>
<th>ITEM</th>
<th>IKONOS</th>
<th>QUICK BIRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenis Data</td>
<td>1 meter / Panchrom</td>
<td>0.61 meter Panchromatic</td>
</tr>
<tr>
<td>Level Data</td>
<td>Geomono atau Geo Ortho Kit</td>
<td>Basic Imagery atau Standard Ortho ready</td>
</tr>
<tr>
<td>Format</td>
<td>Geo Tiff 16 bit</td>
<td>Geo Tiff 16 bit</td>
</tr>
<tr>
<td>Koreksi Radiometrik</td>
<td>Sudah terkoreksi Radiometrik</td>
<td>Sudah terkoreksi Radiometrik</td>
</tr>
<tr>
<td>Liputan awan / Noise Tolerance</td>
<td>< 20% dari total Cakupan area</td>
<td>< 20% dari total Cakupan area</td>
</tr>
<tr>
<td>Cakupan minimum</td>
<td>100 Km-persegi</td>
<td>64 Km-persegi</td>
</tr>
<tr>
<td>Overlaping</td>
<td>1 Km</td>
<td>1 Km</td>
</tr>
<tr>
<td>File Header</td>
<td>HDR Rpc.txt Tfw</td>
<td>TIL RPB IMD</td>
</tr>
</tbody>
</table>

Data di atas sebagai pedoman untuk pembuatan peta citra skala 1 : 2500

DEM (digital elevation model) merupakan data yang digunakan dalam proses ortho rektifikasi. Akurasinya dalam DEM sebaiknya ≤ 5 meter pada skala Ortho rektifikasi 1 : 2500. Kemudian DEM di-resampling dengan ukuran pixel 10 meter, tujuannya agar Citra hasil ortho rektifikasi mempunyai kenampakan yang menyerupai obyek aslinya. Resampling yang lebih rapat (kurang dari 10 meter) akan mengakibatkan rusaknya citra hasil orthorektifikasi. Sedangkan resampling lebih dari 10 m, akan mengurangi akurasi hasil orthorektifikasi. DEM harus
mempunyai sistem proyeksi TM-3 dan minimum overlap dengan citra yang akan dikoreksikan (orthorektifikasi).

Setelah data dan persiapan cukup, maka langkah selanjutnya yang harus diperhatikan; tahapan tersebut adalah :

1. Pre Processing
2. Processing, dan
3. Ploting dan Kartografi.

1. Pre Processing.

Diawali dengan tugas “rejoining” (stiching) atau penggabungan dua atau lebih citra ke dalam satu file. Dimana citra tersebut dipecah karena masalah penyimpanan data (data storage); kemampuan dari media penyimpan data seperti CDRom terbatas. Pihak vendor harus pandai membagi dalam data file yang benar. Untuk menggabungkannya kembali data citra maka dilakukan tahapan “stiching” tersebut. Ada perbedaan dalam hal “stiching” untuk dua jenis citra :

CITRA I K O N O S
Citra IKONOS akan dikirim dalam beberapa bagian citra (CD, DVD,dll) dengan masing-masing citra terdapat header yang dapat digunakan sebagai input dari stiching.

CITRA QUICK BIRD
Citra Quick Bird dikirim dalam beberapa bagian citra (CD, DVD, dll) dengan hanya menyertakan satu file header saja.

Setelah data file lengkap, segera dilakukan perbesaran (blow up) citra satelit pada skala 1:3000; dicetak pada bahan stabil (jenis inkjet paper dengan ketebalan 0,03 mm (masih belum lewat kadaluwarsa). Diusahakan image / tone blow up harus jelas dan tajam. Perlu dilengkapi grid koordinat TN-3 dengan dicantumkan nilai angka koordinatnya. Pada proses blow up perlu diperhatikan overlay dengan GCP (titik ikatan) yang tersedia. Kelengkapan lain adalah :

- Nama Provinsi, Kabupaten, Kecamatan dan Kalurahan/ Desa
- Nama Kontraktor Pelaksana
Kegiatan berikutnya adalah identifikasi dan pengukuran GCP (ground control point) atau Titik Ikat (TDT = titik dasar teknik BPN yang telah ada juga bisa). Ada dua kegiatan dalam tahap ini:

- Pemanfaatan titik ikat yang ada (misal TDT orde-2 atau orde-3 BPN) serta penambahan ikatan (GCP) baru sesuai kebutuhan.
- Pengukuran titik titik baru

Pemasangan titik ikatan harus di lokasi yang mudah dikenal, misalnya di persimpangan jalan, persimpangan sungai, persimpangan sungai dan jalan, serta letak titik yang mudah terbaca pada citra (dikenal).

Beberapa ketentuan pokok dalam identifikasi, agar peta lengkap penampilannya atau Tugas Komplesi Data Lapangan:

a. Batas Administrasi.
Garis batas administrasi pemerintahan seperti propinsi, kabupaten/kota madia, kalurahan/desa; semua nama dan letak batas dikonfirmasikan agar tidak salah. Konfirmasi dengan perangkat/ aparatur pemerintahan setempat. Nama jalan, nama kampong bila perlu dikonfirmasi dengan warga setempat (yang lebih memahami lokasinya).

b. Nama dan fungsi bangunan.
Detil bangunan harus diidentifikasi dan dilengkapi dengan data yang terkait bangunan yang nampakm pada peta; antara lain:

1). Bangunan perkantoran, baik pemerintah maupun swasta
2). Bangunan berfungsi untuk pendidikan, SD, SMP, SMU, Univ. dll
3). Bangunan untuk pelayanan kepada masyarakat: rumah sakit, kantor pos, pertokoan/mal, hotel, dll
4). Bangunan untuk tempat ibadah: masjid, gereja, vihara, kuil, klenteng
5). Bangunan perumahan/nama kompleks, real estate, dll
c. Jalan.
 1). Jalan yang harus diidentifikasi dan dicantumkan namanya, jalan Tol, arteri, jalan raya propinsi, jalan kabupaten
 2). Penulisan nama-nama harus benar dan jelas

d. Rel Kereta Api / Bus way / Lori
 Harus jelas jaringan menuju terminal/ stasiun terdekat; ditulis jelas.

e. Detil Perairan
 1). Detil perairan harus diidentifikasi dan dicatat nama sungai besar, pantai, laut, danau, rawa, tambak.
 2). Detil perairan dengan aliran arus dicantumkan arah dan namanya
 3). Dam/ Bendungan, waduk dicantumkan namanya.

f. Detil Pertanian dan Perkebunan.
 1). Detil/ lahan yang dipergunakan sebagai usaha pertanian, lading
 2). Detil untuk areal perkebunan yang sejenis (sawit, coklat, kopi, dll)
 3). Untuk tanaman penduduk yang tidak berkelompok/ individu tidak perlu dicantumkan.

g. Kuburan
 Untuk kuburan tidak perlu jenisnya, cukup dicantumkan “Kuburan”

h. Titik Kontrol
 Tugu tugu TDT (berdasar aturan PMNA.3/ 97) harus dicantumkan nomor dan kode identifikasinya, diskripsi letaknya.

2 Processing.
 Dari data mentah (raw data) citra satelit dibaca oleh software yang digunakan untuk dapat dilakukan orthorektifikasi. Namun perlu diinformasikan data informasi orbit berdasar file untuk masing-masing citra satelit:
Tabel 7. Data mentah citra ikonos dan quick bird

<table>
<thead>
<tr>
<th>I K O N O S</th>
<th>QUICK BIRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Image → *.Tiff</td>
<td>File Image → *.Tiff</td>
</tr>
<tr>
<td>File Header → *.Hdr</td>
<td>*. IMD</td>
</tr>
<tr>
<td>Company_Agency_licence.txt</td>
<td>Company_Agency_licence.txt</td>
</tr>
<tr>
<td>*_metadata.txt</td>
<td>*_TIL</td>
</tr>
<tr>
<td>*.tfw</td>
<td>*.RPB (Optional jika akan diproses dengan metode Rational Function).</td>
</tr>
<tr>
<td>*_rpc.txt (optional jika akan diproses dengan metode Rational Function).</td>
<td></td>
</tr>
</tbody>
</table>

Kemudian proses identifikasi titik ikat, GCP pada Citra Satelit, secara tahapan berikut ini:

a. Titik control harus dapat teridentifikasi dengan jelas dan benar; kesalahan yang diperbolehkan sampai maksimum = 2 pixel

b. Sebagian dari Titik Kontrol digunakan sebagai ICP (Independent Check Point) dengan kesalahan maksimum = 2 pixel

c. Pengadaan titik ikatan (GCP) dengan cara:
 1). Image to Ground
 Titik titik GCP diperoleh dari lapangan seperti dari Titik GPS orde-3 dan sebagainya.
 2). Image to Vector
 Titik titik GCP diperoleh dari vector daerah yang sama dan bersistem proyeksi yang sama, seperti vector dari peta digital skala 1 : 10.000
 3). Image to Image
 Titik GCP diperoleh dari citra atau foto udara daerah yang sama yang telah dikoreksi.

Block Bundle Adjustment
Block bundle adjustment merupakan persamaan matematik yang digunakan untuk mengkoreksi citra secara simultan, sehingga hasilnya akan merata di seluruh citra. Adapun kesalahan maksimum dari proses block bundle adjustment adalah ≈ 2 pixel.

Orthorektifikasi

Orthorektifikasi adalah metode koreksi yang menggunakan data DEM dan informasi orbit sebagai masukan parameterinya. Dimana data DEM ini digunakan untuk mengkoreksi kesalahan sebagai akibat dari kondisi relief permukaan bumi. Sedangkan informasi orbit akan digunakan sebagai orientasi dalarnya (inner orientation). Ada dua buah metode yang dapat digunakan untuk melakukan rektifikasi, yalah metode Rigorous dan Rational Function. Berikut ini beberapa tipe data yang dapat diolah dengan metode tersebut:

<table>
<thead>
<tr>
<th>Jenis Data Citra Satelit</th>
<th>RIGOROUS Models</th>
<th>Rational Polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKONOS 1 m Geo Mono</td>
<td>Recommended</td>
<td>Tidak bisa</td>
</tr>
<tr>
<td>IKONOS 1 m Geo Ortho Kit</td>
<td>Tidak bisa</td>
<td>Bisa</td>
</tr>
<tr>
<td>Quick Bird 0,61 m Basic imagery</td>
<td>Recommended</td>
<td>Bisa</td>
</tr>
<tr>
<td>Quick Bird 0,61 m Standard Ortho Ready</td>
<td>Tidak bisa</td>
<td>Bisa</td>
</tr>
</tbody>
</table>

Image Enchancement

E. Plotting dan Kartografi.

Tahap “Text Entry” dilaksanakan setelah hasil komplesi di lapangan yang dimasukan ke peta 1 : 2500 (data kelengkapan/ atribut, nama nama yang akan dipakai dalam kelengkapan kartografi peta standar BPN).

Features (kenampakan obyek) seperti jalan, sungai, dan obyek penting lain dapat di-deliniasi dengan cara melakukan on screen digitizing (digitasi langsung di tampilan (on screen). Perlu juga dijaga agar setiap lembar peta skala 1 : 2500 harus di check :edge matching (persambungan tepi antar lembar peta) termasuk kondisi data lapangan, sehingga tidak akan ada obyek-obyek yang tidak benar.

Reproduksi :
Tahap lanjut dalam kartografi/ editing peta adalah pencetakan foto atas dasar:
1. Pengeplotan image citra satelit hasil transformasi ortofoto harus harus menggunakan Inkjet Plotter A-0 presisi (dilampirkan data spesifikasi plotter tersebut).
2. Bahan yang dipakai adalah jenis medium glossy paper dengan ketebalan 0,03 mm dan digunakan sebelum batas kadaluwarsa berlakunya bahan tersebut (perlu dicermati tanggal kadaluwarsa)
3. Bahan yang digunakan harus bebas dari noda-noda , perubahan warna, dan kerapuhan yang dapat menyebabkan menuanya (ageing)
4. Tinta yang dipergunakan plotting harus mampu memberikan warna yang tajam dan tidak berubah karena perubahan kelembaban udara.
5. Kualitas plotting harus pada minimal pada kerapatan pixel 600 dpi
6. Cetakan harus sedemikian rupa sehingga keringnya tetap rata dalam berbagai kondisi kelembaban udara

Latihan

1. Sebutkan hal-hal yang terkait dengan permohonan izin terbang dalam pemetaan fotogrametri?
2. Apa yang dimaksud dengan Flight planning, jelaskan?
3. Bandingkan tipe data mentah antara citra satelit ikonos dan quickbird!
4. Apa yang dimaksud dengan block bundle adjustment?
5. Sebutkan hal-hal yang terkait dengan reproduksi peta!

Kunci Jawaban

1. Telah jelas, lihat pembahasan awal.
2. Perencanaan jalur terbang yaitu menyapakan rencana jalur terbang atas dasar analisis luas area, ukuran model dan skala yang diinginkan.
3. Lihat pada keterangan materi.
4. Persamaan matematis yang digunakan untuk mengkoreksi citra secara simultan.
5. Telah jelas, lihat pada akhir materi.

Rangkuman

Dalam pemetaan secara fotogrametris pengadaan data awal `sangat menentukan kualitas dan ragam hasil nantinya, maka persoalan utama adalah perencanaan yang seksama serta melalui dasar kecermatan pemikiran yang terpadu. Sementara ragam pilihan cara dan pola pengadaan data awal (data akuisisi dalam fotogrametri) sangat terpancang kepada masalah keamanan (security).

Pengaruh kemajuan teknologi baik wahana dan perangkat pengolah data telahmenjadikan pemetaan fotogrametrik lebih mudah dan efisien untuk pengambilan data, pengolahan dan penyajian data ukuran berupa peta.

Test Formatif

1. Instansi pemberi izin pada pemetaan fotogrametris adalah ;
 a. Pusat survei dan pemetaan TNI AU
 b. Pasukan Khusus TNI AU
 c. Pusat survei dan pemetaan udara Bakosurtanal
 d. Jawatan Topografi TNI AD

2. Berikut ini hal-hal yang terkait dalam penyiapan pemotretan kecuali :
 a. Skala foto udara
 b. Jenis kamera
 c. plotter
 d. security clearence
3. Dalam pembuatan rencana jalur terbang yang harus diperhatikan adalah :
 a. skala foto udara yang inginkan
 b. area yang akan dipetakan
 c. Informasi BMG
 d. Format foto udara

4. Agar peta hasil pemetaan informatif maka diperlukan pekerjaan identifikasi :
 a. Batas administrasi
 b. Nama dan fungsi bangunan
 c. Nama daerah
 d. Semua jawaban benar

5. Kesalahan maksimum yang diperbolehkan dalam proses block bundle adjustment adalah :
 a. 2 pixel
 b. 4 pixel
 c. 6 pixel
 d. 8 pixel

6. Dalam permohonan izin harus jelas mencantumkan :
 a. Lokasi administrasi
 b. Letak dan luas daerah
 c. Penunjukan lokasi pada peta topografi
 d. Jawaban a,b,c benar.

7. Skala foto udara yang akan diperoleh dijadikan parameter dalam permohonan izin karena terkait dengan :
 a. Kemampuan pesawat yang akan digunakan
 b. Ketinggian terbang pesawat
 c. Jenis kamera yang digunakan
 d. Jawaban a,b, c benar.
8. Metode GPS kinematik dalam pemetaan fotogrametris akan:
 a. Mempersulit identifikasi wilayah
 b. Memperkecil kebutuhan GCP
 c. Memperlambat proses pemotretan
 d. Tidak ada pengaruhnya sama sekali.

9. Hal-hal di bawah ini terkait dengan media perekam, kecuali:
 a. Film harus mudah dicari di pasaran.
 b. Kualitas kontras negatif harus memenuhi persyaratan reproduksi foto.
 c. Kualitas kontras positif harus memenuhi persyaratan reproduksi foto.
 d. Hasil harus dapat menunjukkan bekas noda/ goresan.

10. Di bawah ini software dalam kartografi digital kecuali:
 a. Adobe photoshop
 b. Auto CAD
 c. ER Mapper
 d. Power point

Cocokan jawaban Saudara dengan kunci jawaban tes formatif yang terdapat di bagian akhir modul ini. Hitunglah jawaban Saudara yang benar, kemudian gunakan rumus di bawah ini untuk mengetahui tingkat penguasaan Saudara terhadap materi modul ini.

Rumus:
\[\text{Tingkat penguasaan} = \frac{\text{Jumlah jawaban Saudara yang benar}}{10} \times 100\% \]

Arti tingkat penguasaan yang Saudara peroleh adalah:
90 – 100% = Baik sekali
80 – 90% = Baik
70 – 80% = Cukup
≤ 70% = Kurang

Bila Saudara memperoleh tingkat penguasaan 80% atau lebih, saudara dapat meneruskan dengan kegiatan belajar selanjutnya. Sedangkan jika tingkat penguasaan saudara masih berada di bawah 80%, saudara diwajibkan mengulangi kegiatan belajar ini, terutama bagian yang belum saudara kuasai secara baik.
A. Metoda Fotogrametrik (Identifikasi)

Pengukuran bidang tanah dengan metoda fotogrametrik untuk pendaftaran tanah sistematik maupun sporadik adalah identifikasi bidang-bidang tanah dengan menggunakan blow-up atau peta foto yang merupakan hasil pemetaan fotogrametrik. Metoda ini biasanya dilaksanakan untuk daerah terbuka (mudah untuk diidentifikasi).

Alat dan perlengkapan yang digunakan untuk pengukuran bidang tanah yaitu ;

- Blowup atau Peta foto skala 1 : 2500 atau skala 1 : 1000.
- Meteran/pita ukur, untuk mengukur sisi-sisi bidang tanah.
- Jarum prik, untuk menandai titik batas bidang tanah pada peta foto/blowup
- Formulir Gambar Ukur
- Alat-alat tulis dan lain sebagainya.

B. Pengukuran Bidang Tanah dengan Blow-up Foto Udara

Blow up foto udara merupakan perbesaran dari pada foto udara dengan skala pendekatan. Blow up foto udara menggambarkan detail keadaan lapangan dari image citra foto. Blow up foto udara bukan merupakan peta.

Pengukuran bidang tanah dilaksanakan dengan cara terrestris atau plotting digital sedangkan blow up hanya digunakan sebagai sket bidang tanah dan untuk mencantumkan data ukuran-ukuran sebagai pelengkap Gambar Ukur.

Ciri-ciri blow up foto udara biasanya belum dilengkapi dengan format peta, legenda serta simbol-simbol kartografi. Sedangkan yang ada hanya keterangan tentang saat pemotretan yaitu pada bagian tepinya. Contoh blow up foto udara
Gambar 20. Blow up foto udara

Tahapan identifikasi dan pengukuran bidang tanah dengan menggunakan blow up foto udara:
1. Siapkan peralatan yang akan digunakan untuk identifikasi lapangan.
2. Siapkan lembar blow up foto udara yang memuat letak bidang-bidang tanah yang akan diukur.
3. Tentukan bidang tanah yang akan diukur dan sudah ditetapkan tanda batasnya dilapangan.
4. Tentukan letaknya pada blow up foto udara.
5. Identifikasi setiap tanda batas dilapangan, kemudian tandai dengan jarum prik di blow up foto udara pada posisi yang sama seteliti mungkin
6. Hubungkan tanda batas yanq bersangkutan dengan tinta merah ukuran 0.1mm sehingga membentuk bidang tanah sesuai bentuk bidang tanah sebenarnya di lapangan.

7. Cantumkan Nomor Bidang Tanah (NIB) pada blowup foto udara di tengah-tengah bidang, sesuai NIB pada daftar isian 201 nya.

8. Ukur sisi-sisi bidang tanah dengan meteran.

9. Cantumkan angka jaraknya di blow up foto udora dengan tinta biru pada sisi-sisi yang sesuai.

10. Isi formulir gambar ukurnya. sedangkan gambar bidang tanahnya adalah copy blow up foto udara ukuran A4 yanq memuat bidang tanah atau bidang-bidang tanah tersebut yang dilampirkan pada gambar ukur.

11. Demikian seterusnya untuk bidang-bidang tanah lainnya.

12. Pembentukan bidang tanah adaiah dengan cara memplot batas bidang tanah hasil identifikasi lapangan kedalam peta pendaftaran dengan menggunakan data-data ukuran (blow up hanya digunakan sebagai referensi orientasi).

Contoh penggunaan blow up foto udara dalam identifikasi/pengukuran bidang tanah:
Gambar 21. Blow up foto untuk identifikasi lapangan
Gambar 22. Hasil identifikasi dengan blow up (menggunakan data ukuran)

C. Pengukuran Bidang Tanah dengan Menggunakan Peta Foto

Peta foto adalah peta yang menggambarkan detil lapangan dari citra foto dengan skala tertentu. Peta foto sudah melalui proses pemetaan fotogrametri oleh karena itu ukuran-ukuran pada peta foto sudah benar, dengan
demikian detail-detail yang ada di peta foto yang dapat didentifkasi dilapangan mempunyai posisi sudah benar di peta.

Gambar 23. Peta dasar pendaftaran (berupa peta foto)

Pengukuran bidang tanah menggunakan peta foto sebagai peta dasar pendaftaran dilaksanakan dengan cara identifikasi titik-titik batas bidang tanah yang sudah ditetapkan di lapangan.

Identifikasi adalah melihat detail dilapangan kemudian menandai detail yang posisinya sama pada peta foto. Oleh karena itu sangat efektif untuk daerah yang terbuka seperti; pesawahan, ladang terbuka dan lain sebagainya. Semua titik batas bidang tanah yang ditunjukan oleh penunjuk batas ditandai pada peta foto. Titik-titik batas tersebut dihubungkan dengan garis sehingga membentuk bidang-bidang tanah yang sesuai dengan keadaan dilapangan. Pada setiap bidang tanah kemudian di beri nomor bidang tanah sesuai dengan nomor bidang tanah pada di 201.

122
Pengukuran di lapangan pada prinsipnya tidak diperlukan. Salah satu atau beberapa sisi bidang tanah dapat diukur dilapangan untuk pengecekan atau memastikan bahwa titik batas yang diidentifikasi telah benar. Hasil ukuran tersebut dicantumkan pada sisi-sisi yang sesuai di peta foto.

Tahapan pengukuran bidang tanah dengan peta foto sebagai peta dasar pendaftaran dengan cara identifikasi lapangan:

1. Siapkan peralatan yang akan digunakan untuk identifikasi lapangan.
2. Siapkan lembar peta foto yang memuat letak bidang-bidang tanah yang akan diukur.
3. Tentukan bidang tanah yang akan diidentifikasi dan sudah ditetapkan tanda batasnya dilapangan.
4. Tentukan letaknya di peta foto.
5. Identifikasi setiap tanda batas dilapangan, kemudian tandai dengan jarum prik di peta foto pada posisi yang sama seteliti mungkin (bukan perkiraan).
6. Hubungkan tanda batas yang bersangkutan dengan tinta merah ukuran 0.1 mm sehingga membentuk bidang tanah sesuai bentuk bidang tanah sebenarnya di lapangan.
7. Cantumkan Nomor Bidang Tanah (NIB) di peta foto pada tengah-tengah bidang, sesuai NIB pada daftar isian 201nya.
8. Ukur salah satu atau beberapa sisi bidang tanah dengan meteran untuk menghindari kesalahan identifikasi.
9. Cantumkan angka jaraknya di peta foto dengan tinta biru pada sisi-sisi yang sesuai.
10. Isi formulir gambar ukurnya, sedangkan gambar bidang tanahnya adalah copy peta foto ukuran A4 yang memuat bidang tanah dan atau bidang-bidang tanah sekitarnya.
11. Demikian seterusnya untuk bidang-bidang tanah lainnya.
12. Tentukan luas bidang tanahnya dengan mengukur pada peta foto.
Gambar 24. Penggunaan peta foto dalam identifikasi bidang tanah (peta foto overlay dengan drafting film)
Apabila terdapat titik-titik batas yang tidak dapat diidentifikasi misalnya Terhalang atau tertutup pohon sehingga sulit untuk menentukan posisinya pada peta foto, maka dilakukan pengukuran tambahan (suplesi) dengan cara mengikat kart pada detail-detail terdekat yang kelihatan sehingga titik batas tersebut dapat ditentukan di peta.

Gambar 25. Hasil identifikasi dan pengukuran batas bidang
Contoh:

Gambar 26. Pengukuran suplesi

Titik A adalah contoh yang tidak jelas di peta foto (terhalang). Untuk itu perlu diadakan pengukuran suplesi dari titik B, C dan F.

D. Pengukuran Bidang Tanah dengan Menggunakan Peta Garis Digital Fotogrametris

Pengukuran bidang tanah dengan menggunakan peta garis digital hasil pemetaan fotogrametris pada prinsipnya adalah identifikasi dengan blow up foto udara. Hasil identifikasi dan data ukuran tersebut selanjutnya digunakan untuk editing peta garis dan menghasilkan peta pendaftaran.

Tahapan pengukuran bidang tanah dengan menggunakan peta garis digital fotogrametris sebagai peta dasar pendaftaran pada daerah pesawahan/tambak:

1. Siapkan peralatan yang akan digunakan untuk identifikasi lapangan.
2. Siapkan lembar blow up foto udara yang memuat letak bidang-bidang tanah yang akan diukur.
3. Tentukan bidang tanah yang akan diukur dan sudah ditetapkan tanda batasnya dilapangan.
4. Tentukan letaknya pada blow up foto udara.
5. Identifikasi setiap tanda batas dilapangan, kemudian tandai dengan jarum prik di blow up foto udara pada posisi yang sama seteliti mungkin (bukan perkiraan).
6. Hubungkan tanda batas yang bersangkutan dengan tinta merah ukuran 0,1 mm sehingga membentuk bidang tanah sesuai bentuk bidang tanah sebenarnya di lapangan.
7. Cantumkan Nomor Bidang Tanah (NIB) pada blow up foto udara di tengah-tengah bidang, sesuai NIB pada daftar isian 201nya.
8. Ukur sisi-sisi bidang tanah dengan meteran
9. Cantumkan angka jaraknya di blow up foto udara dengan tinta biru pada sisi-sisi yang sesuai.
10. Isi formulir gambar ukurnya, sedangkan gambar bidang tanahnya adalah copy blow up foto udara ukuran A4 yang memuat bidang tanah atau bidang-bidang tanah tersebut yang dilampirkan pada gambar ukur.
11. Demikian seterusnya untuk bidang-bidang tanah lainnya.
12. Pembentukan bidang tanah adalah dengan cara mengedit batas bidang tanah hasil identifikasi lapangan kedalam peta garis digital dengan menghapus atau menambah garis batas bidang tanah.

Latihan

1. Jelaskan pengertian metode fotogrametris untuk pengukuran bidang tanah?
2. Sebutkan alat dan bahan dalam pembuatan gambar ukur dengan cara fotogrametris!
3. Uraikan langkah-langkah pengukuran bidang tanah dengan media blow up foto!
4. Sebutkan keuntungan peta foto dalam pengukuran bidang tanah!
5. Uraikan tahapan pengukuran bidang tanah dengan peta garis digital!
Kunci Jawaban

1. Pengukuran bidang-bidang tanah dengan media hasil produk dari pemetaan fotogrametris seperti blowup foto, peta foto, peta grais dan foto udara itu sendiri.
2. Lihat pada awal materi.
3. Telah jelas diuraikan, pahami.
4. Dengan peta foto didapat beberapa keuntungan diantaranya; identifikasi obyek jelas karena menggambarkan obyek sebenarnya di lapangan, hasil pengukuran secara langsung tercover dalam lembar peta, tidak perlu data dan titik kontrol untuk penggambaran di peta.
5. Telah jelas, lihat dimateri akhir.

Rangkuman

Pemetaan fotogrametris merupakan salah satu metode yang direkomendasikan untuk pengukuran bidang-bidang tanah di bidang kadastral. Hasil pemetaan ini selain berupa berbagai peta seperti peta dasar pendaftaran baik berupa peta foto maupun peta garis, blowup foto dan foto udara secara tidak langsung juga dihasilkan titik kontrol dilapangan yang berguna untuk pengikatan bidang dan mendapatkan koordinat lapangan dari foto udara itu sendiri.

Dalam praktek pengukuran bidang-bidang tanah di lapangan, penggunaan Peta Foto mempunyai ketelitian yang paling baik dibandingkan dengan penggunaan Blow-up foto maupun peta garis digital fotogrametri. Aplikasi ini sangat sesuai untuk daerah terbuka sebagaimana daerah pertanian dikarenakan proses identifikasi batas-batas bidang tanah menjadi mudah dan akurat.

Test formatif 6

1. Pemetaan secara fotogrametris digunakan wahana berupa:
 a. Pesawat terbang
b. Helikopter
c. Mobil
d. Kereta api

2. Berikut ini yang bukan hasil dari pemetaan fotogrametri adalah :
 a. Blow up foto
 b. Peta garis terestrial
 c. Peta foto
 d. Peta orthofoto

3. Peralatan yang harus dibawa pada saat pengukuran bidang tanah kecuali :
 a. Formulir gambar ukur
 b. Copy peta foto
 c. Water pass
 d. Meteran

4. Pengukuran bidang tanah dengan media peta foto sangat baik untuk daerah :
 a. Permukiman
 b. Perkotaan
 c. perumahan
 d. Pertanian

5. Pengukuran tambahan untuk menetukan batas bidang tanah disebut :
 a. suplesi
 b. komplesi
 c. suksesi
 d. kompensasi

6. Perbesaran foto udara dengan skala pendekatan disebut :
 a. Blow up foto
b. Peta foto
c. Peta foto digital
d. Orthofoto

7. Di bawah ini ciri dari blow up foto yaitu :
 a. Terdapat keterangan saat pemotretan
 b. Dilengkapi format peta
 c. Dilengkapi legenda
 d. Dilengkapi simbol kartografi

8. Kenampakan obyek pada peta foto lebih mudah dipahami karena :
 a. Digunakan simbol-simbol
 b. Toponimi sangat lengkap
 c. Obyek tergambar apa adanya
 d. Jawaban a,b,c benar.

9. Keuntungan menggunakan peta foto dalam pemetaan kadastral adalah kecuali:
 a. Identifikasi obyek jelas
 b. Posisi obyek jelas
 c. Letak relatif obyek benar
 d. Tidak perlu gambar ukur

10. Proses melihat detil dilapangan kemudian memplotting di lembar peta foto
disebut :
 a. identifikasi
 b. komplesi
 c. suksesi
 d. kompensasi
Cocokan jawaban Saudara dengan kunci jawaban tes formatif yang terdapat di bagian akhir modul ini. Hitunglah jawaban Saudara yang benar, kemudian gunakan rumus di bawah ini untuk mengetahui tingkat penguasaan Saudara terhadap materi modul ini.

Rumus:
Tingkat penguasaan = \(\frac{\text{Jumlah jawaban Saudara yang benar} \times 100}{10} \)

Arti tingkat penguasaan yang Saudara peroleh adalah:
- \(90 – 100\% \) = Baik sekali
- \(80 – 90\% \) = Baik
- \(70 – 80\% \) = Cukup
- \(\leq 70\% \) = Kurang

Bila Saudara memperoleh tingkat penguasaan 80\% atau lebih, saudara dapat meneruskan dengan kegiatan belajar selanjutnya. Sedangkan jika tingkat penguasaan saudara masih berada di bawah 80\%, saudara diwajibkan mengulangi kegiatan belajar ini, terutama bagian yang belum saudara kuasai secara baik.
Materi dalam modul ini akan memberikan gambaran tentang pemanfaatan Unmanned Aerial Vehicle (UAV) dalam bidang fotogrametri untuk kepentingan pengukuran dan pemetaan batas bidang tanah dalam rangka pendaftaran tanah.

Setelah mempelajari modul ini diharapkan Mahasiswa mampu mengetahui prinsip pemetaan fotogrametri menggunakan UAV dan hasil pemetaan digunakan untuk kepentingan pendaftaran tanah.

Materi dalam modul ini berisi tentang teori-teori UAV, Instrumen UAV, Pelaksanaan Pemetaan UAV.

A. Konsep Teoritis Unmanned Aerial Vehicle (UAV).

Perkembangan teknologi fotogrametri sangat cepat, salah satunya adalah pemanfaan wahana Unmanned Aerial Vehicle (UAV) / Drone untuk kegiatan pengukuran dan pemetaan. Diantara keterbatasan operasional teknologi Fotogrametri konvensional, maka metode fotogrametri dengan menggunakan wahana UAV sangat menjanjikan. Resolusi spasial yang tinggi akan
menghasilkan skala peta yang besar dan teliti dengan cakupan wilayah tertentu. Karena skala peta yang dihasilkan adalah skala besar, maka sangat memungkinkan hasil foto udara dengan menggunakan UAV ini untuk digunakan membuat peta dasar pendaftaran bahkan peta pendaftaran.

Penyebutan wahana Unmanned Aerial Vehicle beragam pada intinya adalah penggunaan pesawat udara tanpa awak yang dilengkapi dengan kamera untuk kegiatan pemetaan fotogrametri. Nama lain dari UAV adalah drone, tetapi istilah drone lebih banyak digunakan untuk dunia militer dan wartawan.

Jenis wahana tanpa awak atau UAV ini dapat dikelompokkan berdasarkan cara terbangnya:

1. Chopter
2. Fixed Wing
3. Hybrid.

Perbedaan wahana jenis Choopter dan Fixed Wing dapat dilihat pada table berikut ini:

<table>
<thead>
<tr>
<th>Proyek</th>
<th>Fixed Wing</th>
<th>Multicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pengukuran dan Pemetaan</td>
<td>Pengukuran dan Pemetaan untuk area luas</td>
<td>Pengukuran dan Pemetaan untuk area sempit</td>
</tr>
<tr>
<td>Penggunaan</td>
<td>Survei Pengukuran dan Pemetaan untuk rural area (pedesaan, perkebunan, pertanian, hutan dll)</td>
<td>Survei dan Pengukuran dan Pemetaan untuk urban area (perkotaan, realestate, inspeksi konstruksi)</td>
</tr>
<tr>
<td>Kecepatan</td>
<td>Tinggi</td>
<td>Rendah</td>
</tr>
<tr>
<td>Cakupan</td>
<td>Luas</td>
<td>Kurang Luas</td>
</tr>
<tr>
<td>Resolusi Spasial</td>
<td>Sampai dengan Cm/inch per pixel</td>
<td>Sampai dengan mm per pixel</td>
</tr>
<tr>
<td>Area untuk Take off/Landing</td>
<td>Luas</td>
<td>Sempit</td>
</tr>
<tr>
<td>Waktu terbang dan kemampuan mengatasi terpaan angin</td>
<td>Lama</td>
<td>Tinggi</td>
</tr>
</tbody>
</table>

1. Dense Point Cloud.
A point cloud is a set of data points in some coordinate system. Data point clouds menurut (Quentero dkk, 2008) adalah sekumpulan titik-titik yang memiliki koordinat tiga dimensi (X,Y,Z) yang mana juga memberi informasi tambahan yaitu warna serta reflektivitas. Di dalam point clouds memiliki posisi koordinat tiga dimensi dan jika ada tambahan informasi warna dan reflektivitas maka point clouds bisa menjadi informasi empat dimensi. Data point clouds dapat diperoleh dari kegiatan extrasi foto atau citra dari kegiatan fotogrametri dan penginderaan jauh. Dense point clouds adalah kumpulan titik tinggi dalam jumlah yang sangat banyak, yang dihasilkan dari proses fotogrametri foto udara. Point Cloud: titik awan yang umumnya dihasilkan dari proses image matching (fotogrametri) atau laser scanning.

Gb. Contoh Dense Point Cloud.

2. Digital Terain Mode.

Definisi DTM, sangat banyak. Tetapi intinya adalah representasi dari permukaan bumi dalam format digital dengan format koordinat 3 dimensi (X, Y, Z). Istilah DTM pada literatur literatur yang ada:

- Digital Terain Model (DTM).
- Digital Elevation Model (DEM).
- Digital Terrain Data (DTD).
- Digital Terrain Elevation Data (DTED).
Digital Ground Model (DGM).
Digital Surface Model (DSM).
Digital Height Model (DHM).

Menurut Info Terra05 antara DTM dan DEM dua pengertian yang berbeda. DTM hanya memperhitungkan permukaan bumi saja, tanpa melibatkan tutupan lahan, sedangkan DEM mengukur dan memperhitungkan titik tertinggi yang terletak diatas permukaan bumi dimana tinggi tutupan lahan termasuk yang diukur. Menurut InterMap, DEM terdiri atas DTM dan DSM.

Gambar Pembentukan DEM dari sepasang Foto bertampalan.

3. Orthorektifikasi.

Orthorektifikasi adalah suatu proses membuat foto yang semula memiliki proyeksi sentral menjadi peta foto yang memiliki proyeksi orthogonal. Proses Orthorektifikasi dapat dilakukan dengan tidak menggunakan model 3D digital permukaan bumi (Orthorektifikasi hanya terrain) dan menggunakan model 3D digital permukaan bumi (true orthorektifikasi). Hasil proses orthorektifikasi menggunakan dan tidak menggunakan model 3D digital permukaan bumi dapat dilihat pada gambit berikut ini.

135
Gambar Orthorektifikasi.

Proses rektifikasi dapat dilihat pada gambar berikut ini:

Gambar Proses Rektifikasi

Dalam proses rektifikasi juga terdapat proses trianggulasi udara, yaitu penyesuaian sistem koordinat dari koordinat foto menjadi koordinat peta. Pembentukan koordinat hasil pemotretan dapat dilakukan dengan dua cara yaitu:

Proses Trianggulasi Udara:
1. Indirect Georeferencing, Diperlukan Input koordinat 3D Ground Control Point (Premark/Postmark)

2. Direct Georeferencing.

 Tiga sistem pengukur:
 - GPS/GNSS (pengukur posisi)
 - INS/IMU (pengukur orientasi)
 - Kamera Udara (untuk melakukan pemotretan dari udara)

B. Peralatan/Instrumen UAV.

Platform UAV terdiri atas: Sistem dalam pengendalian wahana UAV, modul GNSS dan proses pemetaan nya yang dikombinasikan dengan sisitem GNSS serta sistem kontrolnya. Instrumen UAV yang sering digunakan adaalh sebagai berikut:

- **Platform Wahana Udara** dengan wingspan of 1.5-2.0 metres harga $100 - $550;
- **electric motor propulsion system** dengan batere Lithium polymer dan charging system
- **R/C system (radio control)** dengan servo
- **System Autopilot** - Arduino based APM auto-pilot computer with free Ardupilot open source software and Mission Planner software for system configuration, flight planning, and post-flight analysis
- **telemetry system** - RF Radio
- **ground station** - Android pad computer running free open source Droid Planner software
- **Payload** digital camera
- **data processing** untuk digital fotograf
- **photogrammetric** software

Arsitektur, wahana UAV untuk kegiatan pemetaan dapat dilihat pada gambar berikut ini:
Gambar… Arsitektur Wahana UAV untuk Pemetaan.

Pengolahan Data Foto/Image merupakan unsur yang penting, diperlukan spesifikasi teknik tertentu dari komputer yang digunakan untuk pengolahan foto hasil pemetaan. Berikut ini contoh spesifikasi teknik dari komputer yang digunakan untuk pengolahan foto hasil pemetaan UAV Soft Ware Fotogrametry memerlukan spesifikasi komputer yang canggih, contoh Software Agisoft spesifikasi komputer (Tipe Advance 64 GB RAM) :

CPU: Six-core Intel Core i7 CPU, Socket LGA 2011-v3 or 2011 (Haswell-E, Ivy Bridge-E or Sandy Bridge-E). Motherboard: Any LGA 2011-v3 or 2011 model with 8 DDR4 or DDR3 slots and at least 1 PCI Express x16 slot. RAM: DDR4-2133 or DDR3-1600, 8 x 4 GB (32 GB total) or 8 x 8 GB (64 GB total). GPU: Nvidia GeForce GTX 780 Ti, GeForce GTX 980 or GeForce GTX TITAN X.
C. Pelaksanaan Pemetaan dengan UAV.

Pelaksanaan pemetaan dengan menggunakan wahana UAV secara prinsip tidak berbeda dengan pelaksanaan pemetaan fotogrametri menggunakan pesawat berawak dengan menggunakan kamera digital. Hanya cara menerbangkan pesawat yang berbeda. Untuk proses selanjutnya sama. Berikut ini gambar prosers pelaksanaan pemetaan menggunakan UAV.

Gb. Pelaksanaan Pemetaan Menggunakan Wahana UAV.
Latihan

1. Sebutkan hal-hal yang terkait dengan permohonan izin terbang dalam pemetaan fotogrametri?
2. Apa yang dimaksud dengan Flight planning, jelaskan?
3. Bandingkan tipe data mentah antara citra satelit ikonos dan quickbird!
4. Apa yang dimaksud dengan block bundle adjustment?
5. Sebutkan hal-hal yang terkait dengan reproduksi peta!

Kunci Jawaban
1. Telah jelas, lihat pembahasan awal.
2. Perencanaan jalur terbang yaitu menyiapkan rencana jalur terbang atas dasar analisis luas area, ukuran model dan skala yang diinginkan.
3. Lihat pada keterangan materi.
4. Persamaan matematis yang digunakan untuk mengoreksi citra secara simultan.
5. Telah jelas, lihat pada akhir materi.

Rangkuman

Dalam pemetaan secara fotogrametri pengadaan data awal `sangat menentukan kualitas dan ragam hasil nantinya`, maka persoalan utama adalah perencanaan yang seksama serta melalui dasar kecermatan pemikiran yang terpadu. Sementara ragam pilihan cara dan pola pengadaan data awal (data akuisisi dalam fotogrametri) sangat terpencang kepada masalah keamanan (security).

Pengaruh kemajuan teknologi baik wahana dan perangkat pengolah data telah menjadikan pemetaan fotogrametritelah lebih mudah dan efisien untuk pengambilan data, pengolahan dan penyajian data ukuran berupa peta.
1. Instansi pemberi izin pada pemetaan fotogrametris adalah :
 a. Pusat survei dan pemetaan TNI AU
 b. Pasukan Khusus TNI AU
 c. Pusat survei dan pemetaan udara Bakosurtanal
 d. Jawatan Topografi TNI AD

2. Berikut ini hal-hal yang terkait dalam penyiapan pemotretan kecuali :
 a. Skala foto udara
 b. Jenis kamera
 c. plotter
 d. security clearence

3. Dalam pembuatan rencana jalur terbang yang harus diperhatikan adalah :
 a. skala foto udara yang inginkan
 b. area yang akan dipetakan
 c. Informasi BMG
 d. Format foto udara

4. Agar peta hasil pemetaan informatoif maka diperlukan pekerjaan identifikasi :
 a. Batas administrasi
 b. Nama dan fungsi bangunan
 c. Nama daerah
 d. Semua jawaban benar

5. Kesalahan maksimum yang diperbolehkan dalam proses block bundle adjustment adalah :
 a. 2 pixel
b. 4 pixel
c. 6 pixel
d. 8 pixel

6. Dalam permohonan izin harus jelas mencantumkan:
 a. Lokasi administrasi
 b. Letak dan luas daerah
 c. Penunjukan lokasi pada peta topografi
 d. Jawaban a,b,c benar.

7. Skala foto udara yang akan diperoleh dijadikan parameter dalam permohonan izin karena terkait dengan:
 a. Kemampuan pesawat yang akan digunakan
 b. Ketinggian terbang pesawat
 c. Jenis kamera yang digunakan
 d. Jawaban a,b, c benar.

8. Metode GPS kinematik dalam pemetaan fotogrametris akan:
 a. Mempersulit identifikasi wilayah
 b. Memperkecil kebutuhan GCP
 c. Memperlambat proses pemotretan
 d. Tidak ada pengaruhnya sama sekali.

9. Hal-hal di bawah ini terkait dengan media perekam, kecuali:
 a. Film harus mudah dicari di pasaran.
 b. Kualitas kontras negatif harus memenuhi persyaratan reproduksi foto.
 c. Kualitas kontras positif harus memenuhi persyaratan reproduksi foto.
 d. Hasil harus dapat menunjukkan bekas noda/ goresan.

10. Di bawah ini software dalam kartografi digital kecuali:
 a. Adobe photoshop
b. Auto CAD
c. ER Mapper
d. Power point

Cocokan jawaban Saudara dengan kunci jawaban tes formatif yang terdapat di bagian akhir modul ini. Hitunglah jawaban Saudara yang benar, kemudian gunakan rumus di bawah ini untuk mengetahui tingkat penguasaan Saudara terhadap materi modul ini.

Rumus :
Tingkat penguasaan = \(\frac{\text{Jumlah jawaban Saudara yang benar}}{10} \times 100\% \)

Arti tingkat penguasaan yang Saudara peroleh adalah :
- 90 – 100% = Baik sekali
- 80 – 90% = Baik
- 70 – 80% = Cukup
- \(\leq 70\% \) = Kurang

Bila Saudara memperoleh tingkat penguasaan 80% atau lebih, saudara dapat meneruskan dengan kegiatan belajar selanjutnya. Sedangkan jika tingkat penguasaan saudara masih berada di bawah 80%, saudara diwajibkan mengulangi kegiatan belajar ini, terutama bagian yang belum saudara kuasai secara baik.

DAFTAR PUSTAKA

______Standarisasi spesifikasi teknis pembuatan peta dasar menggunakan foto udara. Workshop Manajemen Proyek Pendaftaran Tanah Sistematik dan LMPDP, 2003

KUNCI TEST FORMATIF
Test formatif 1
1. a
2. b
3. c
4. a
5. c
6. d
7. a
8. b
9. b
10. d

Test formatif 2
1. b
2. c
3. c
4. a
5. d
6. a
7. a
8. c
9. d
10. b

Test formatif 3
1. a
2. b
3. b
4. d
5. c

Test formatif 4
1. a
2. b
3. d
4. d
5. c
6. d
7. d
8. a
9. b
10. b

Test formatif 5
1. a
2. c
3. d
4. d
5. d
6. a
7. d
8. d
9. c
10. d

Test formatif 6
1. a
2. d
3. d
4. b
5. b